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CHAPTER 1. GENERAL INTRODUCTION 

1.1 DNA damage by the potent carcinogen benzo[a]pyrene 

1.1.1 Formation of DNA-BPDE adducts 

Various organic and inorganic compounds are known to be potential carcinogens. 

Among the most potent and widely distributed chemical carcinogens are the polycyclic 

aromatic hydrocarbons (PAHs), which are found mostly in petroleum and combustion 

products derived from heat and power generation and motor vehicle exhausts [1], Since the 

first investigation into the tumorigenic properties of PAH occurred about 200 years ago with 

the report that chimney sweeps developed scrotal cancer due to their occupational exposure 

to soot [2], carcinogenesis by PAHs has been the subject of numerous investigations [3-5], 

Later [6], the compound responsible for the scrotal cancer was identified as benzo[a]pyrene 

(BP). BP is the most extensively studied environmental carcinogen [7]: in the United States 

its emission into the air is estimated about 900-1300 tons per year as the result of 

combustion of fossil fuels [1,8], 

It is believed that the initial event in cancer is adduct formation between cellular 

DNA and carcinogens [7]. However, PAHs are chemically inert toward DNA, therefore, 

metabolic activation by biological enzyme systems is necessary to convert them to reactive 

electrophiles. In cells, BP can be activated by two major mechanisms, monooxygenation to 

yield bay-region dioi epoxides [9-11] and one-electron-oxidation to yield radical cations [12-

14], The schematic representation of the BP activation pathway leading to the formation of 

electrophilic 7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), which 

eventually forms the major stable adducts to DNA, is illustrated in Figure 1-1. Upon its 

introduction into certain cells, BP is readily oxidized to a 7,8-oxide [15] by a microsomal 
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Figure 1-1. The metabolic pathways of benzo[<ar]pyrene to epoxides, dihydrodiol and 7,8-
dihydrodiol-9,10-epoxides. The tMck solid lines indicate the major pathways. 
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system which mcludes cytochrome p-450 and epoxide hydrolase. The resulting arene oxides 

are then transformed to the corresponding (±)-/r<ms-7,8-dihydrodiols [16,17], which might 

be transformed further to various metabolites. The BP 7,8-dihydrodiols are further 

metabolized to reactive metabolites, 7,8-diol 9,10-epoxides (BPDEs), which are known to 

bind covalently to DNA [18,19]. 

Among the four different isomeric BPDEs, (+)-flwft-BPDE is believed to be the 

predominant isomer produced metabolically (90%), but minor amounts of (-)-af«/z-BPDE 

and (±)-.9'«-BPDE are also formed [9]. The preferred reaction of (+)-awrt-BPDE to DNA 

occurs via the formation of a covalent bond between the electrophilic CIO carbon of BPDE 

and the exocyclic N^-amino group of guanine base in DNA (N^-dG adduct), which accounts 

for -90 % of its adducts with DNA [20]. Other minor adducts such as N^-adenine and 0^-

guanine and N'^-guanine adducts are also formed. The adduct formation of (-)-anft-BPDE 

to DNA is less regiospecific, yielding only 50 % of the N^-dG products along with 

substantial amounts of other adducts. The N^-dG adducts can be formed via trans or cis 

addition of N^-amino group of guanine base to CIO position with respect to the epoxides, 

and the resulting four trans- and cw-awft-BPDE-N^-dG adducts are shown in Figure 1-2. 

The ratio of trans to cis addition adducts is very high, 94:1, for (+)-awft-BPDE while in the 

case of (-)-a«^/-BPDE the ratio is substantially reduced to 63:22 [21]. 

1.1.2 Biological activity of DNA-BPDE adducts 

Racemic an//-BPDE is reported to be more mutagenic than (±)-jry«-BPDE [22,23]. 

Moreover, (+)- and (-)-enantiomers of owft-BPDE exhibit striking differences in biological 

activities. The results of tumorigenicity studies on mouse skin indicated that the (+)-anti-

BPDE possesses 60-70% of the skin tumor-initiating activity of benzo[a]pyrene diol epoxide 

whereas the (-)-(3Mft-BPDE, as well as the two enantiomers of syn-BPDE, were either very 
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(+)-a«r/-BPDE 
7RJS<lihy<»oiy.9S.I0R<|>oxy-BP 

(+)-/rartj-a/itt-BPDE-N ̂ -dG 
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O 

(-)-cjs-an«-BPDE-N -dG 

Figure 1-2. Structures of the four stereoisomeric owrt-BPDE-N^-dG adducts. 
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weakly tumorigenic or were essentially inactive [24], Detailed studies on the tumorigenicity 

of BPDEs in newborn mice have confirmed that the (+)-a«ft-BPDE was more than 30-fold 

more potent in inducing lung adenomas in newborn mice than benzo[a]pyrene, {-)-cmti- and 

(±)-j5w-BPDE when each compound was administered to newborn mice at equal dose 

[25,26]. In this in vivo model, it was also established that (+)-a«ft-BPDE is the ultimate 

carcinogenic metabolite of benzo[a]pyrene. However, the mutagenic efficiencies of the two 

enantiomers, and (-)-a?jft-BPDE, are different depending on the selected bacterial 

and mammalian cell systems studied: in S. typhimurium cells (strain TA98), the mutagenic 

activities of (+)-and (-)-enantiomers are almost identical, but in TAIOO strain, as well as m 

manamalian Chinese hamster ovary cells (v79 cells), the activity of (+)-aw^z-BPDE is 4-6 

times greater than that of (-)-awft-BPDE [27,28], Although the same adduct distributions 

are found in both the bacterial and human cells, the relative mutagenicity of (+)-a7ift-BPDE 

is about 7 times higher than that of the (-)-enantiomer in diploid human fibroblasts [29], The 

differences in the mutagenicity imply that the same lesions are processed differently in human 

and bacterial cells. 

The covalent binding of BPDE to DNA induces errors in DNA replication and 

transcription. Detailed in vitro studies of BPDE-dG lesions in DNA using site-specific and 

stereospecific BPDE-N^-dG oligonucleotide adducts as templates reported that the DNA 

and RNA polymerase activity as well as the type of mutations depends strongly on the 

stereochemistry of the BPDE-N^-dG lesion [30,31]. DNA polymerase I (Klenow fi-agment) 

showed relatively easy bypass of the (-)-/ran5-aw/7-BPDE-N2-dG lesion with 

misincorporation of dAMP (GC ->AT transversion), while in the case of (-)-c75-awft-BPDE-

N^-dG lesion, very poor bypass with base deletion was observed [31]. Also, in the same 

study, if the 5' flanking base of the lesion site was changed firom dC to dT, the firequency of 

one base deletion increased 9.3-fold. On the other hand, T7 DNA polymerase (Sequenase 
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2.0) and human polymerase a were strongly blocked by {+)-trans - and (+)-c;5-BPDE 

adducts and a small amount of dCMP was preferentially incorporated opposite to lesion 

[30], These different behaviors of DNA polymerases with the same BPDE lesion indicate 

that the mutational spectra are influenced by the types of DNA polymerases and may explain 

in part why the mutagenicity of the same BPDE adduct is different in mammalian cells and in 

bacterial cells. An mvestigation of the influences of site-specific and stereospecific BPDE-

DNA adducts on transcription using T7 RNA polymerase revealed that the transcription is 

significantly inhibited in the order of (+)-trans- > (-)-trans- > (+)-cis- > (-)-C/J-BPDE-N2-

dG at the lesion site [32]. 

1.1.3 Conformations of DNA-BPDE adducts 

There have been many studies of the conformations of anft'-BPDE-N^-dG adducts in 

DNA using various techniques [5,33-35] aimed at investigating carcinogen structure and 

biological fimction relationship. In this section, however, only very recent findings, mostly 

studied with high resolution NMR spectroscopies, will be discussed. Using molecular 

mechanics methods and the energy-minimization computational program DUPLEX with 

extensive conformational searches, Singh et al. obtained molecular structures of the (+)- and 

(-)-/ri3ws-<3?7//-BPDE-N2-dG lesions in a duplex dodecamer (dG-dC)6-(dG-dC)6 [36], This 

theoretical study successfiilly predicted that both (+)- and {-)-trans adducts were positioned 

externally in the minor groove of DNA and that the pyrenyl ring system pointed towards the 

5' side of the modified strand for (+)-trems adducts while in {-ytrans adducts the pyrenyl 

ring system pointed towards the 3' side of the modified strand. The solution structures of 

(+)- and (-)-fraws-a?7«-BPDE-N2-dG oligonucleotides were determined by two-dimensional 

NMR spectroscopic techniques by Cosman et al. [37] and de los Santos et al. [38], 

respectively. The refined structures of (+)- and (-)-/ra7is-an//-BPDE-N^-dG modified 
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oligonucleotides are shown in Figure 1-3. As predicted by Singh et al. [36], the pyrenyl ring 

systems of these adducts are located at the minor groove with their long axes directed 

towards the 5' side and 3' side of the modified strands for the (+)- and {-)-trans adducts, 

respectively. The angle between the long axis of the pyrenyl ring and the average helix axis 

is about 45° in the (+)-trans-anti-'SP'DE modified oligonucleotide d(CCATCGCTACC) 

d(GGTAGCGATGG), where bold typesetting is used for the BPDE lesion site, and is 

approximately 40° in the {-ytrans-anti-'SPDB modified duplex. All base pairs are intact, 

despite the fact that the minor groove is widened to ~8 A in order to accommodate the 

pyrenyl ring system of both (+)- and {-)-trans adducts. 

The solution structure of the (+)-cw-a7jft-BPDE adduct in the same duplex 

oligonucleotide was reported as an intercalative complex of pyrenyl ring [39]. The NMR 

study of the (+)-cw-a«if/-BPDE modified duplex oligonucleotide shows (see Figure 1-4) that 

the benzylic ring of the covalently bound BPDE moiety is inserted between adjacent base 

pairs. The modified dG residue is displaced into the minor groove, and stacked over the 

sugar ring of the adjacent cytosine residue on the 5' side. The partner C residue on the 

complementary strand is displaced firom the center of the duplex towards the major groove. 

The base pair at the -GC-site is disrupted, while all other base pairs are intact and of the 

Watson-Crick type. The long axis of the BPDE ring is orthogonal to the flanking dG:dC 

base pau" and spans both grooves of the helix. In this conformation, there is a larger extent 

of pyrenyl-base stacking interaction than in the fraw5-BPDE modified duplexes. While the 

solution structure of the (-)-c/j-flwft-BPDE-N2-dG adduct has not yet been determined by 

high-resolution NMR methods, optical spectroscopic studies carried out with 

polynucleotides and oligonucleotides modified covalently with (+)- and (-)-awft-BPDE 

suggest that both cis adducts are characterized by intercalative conformation with strong 

pyrenyl-base stacking interaction [34]. 
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A 

(-)-trans-anf/-BPDE-N2-dG 

B 

(+)-trans-anr/-BPDE-N2.dG 

Figure 1-3, Stereo pairs of {-)-trans- (frame A) and (+)-fr-flfW5-a77ft-BPDE-N2-dG (frame B) 
adducts to a duplex oligonucleotide in solution. Only the central d-(TCGCT) d-(AGCGA) 
segment is shown. The BPDE moiety is shown with darkened bonds. 3'-Thymine is the 
base in the upper left-hand comer. The long axis of the pyrenyl system is directed toward 
the 3'-end of the modified strand for the (-)-/r<ms adduct and is directed toward the 5'-end of 
the modified strand for the {+)-trans adduct. 
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Figure 1-4, Solution structures of the (+)-c/5-a«ft-BPDE-N2-dG adduct in a duplex 
oligonucleotide. Only the central d-(TCGCT)-d-(AGCGA) segment is shown. Base 
numbering is d(T4-C5-G6-C7-T8)-d(A15-G16-C17-G18-AI9) with T4 corresponding to 
the 5' end of the segment. (Top) A view looking into the minor groove and normal to the 
helix axis. (Bottom) A view looking down the helix axis. 



www.manaraa.com

10 

1.1.4 Eniymatic repair of BPDE-adducts 

Removal of DNA-carcinogen adducts by cellular DNA repair en2ymes is as 

important as formation of DNA-carcinogen adducts in carcinogenesis. The importance of 

repair of DNA-BPDE adducts was demonstrated by Felling and Slaga in their study with (± 

)-syn and awft-BPDE topically applied to mice [40]. The modification levels of DNA by (±)-

syn- and (±)-a«ft-BPDE in the mouse basal cell layer at 3,12 and 24 hours after topical 

treatment with the corresponding BPDE were equivalent. However, the BPDE levels of the 

two diastereoraers at raacromolecules (DNA, RNA and proteins) in whole epidermis showed 

two different time courses: at 3 hours after the treatment, 3 times more racemic (±)-.g72-

BPDE adducts was bound to DNA isolated from whole epidermis (also RNA and proteins 

showed a similar binding ratio pattern), while 12 hours after treatment the two diastereoraers 

bound to the same extent. The 24 hours sample contamed ~2 times more (±)-a«ft-BPDE 

adducts than syn isomers. The absence of any observable difference between the amount of 

anti- and ^-diastereomer bound to basal DNA suggested that the previously reported 

difference in carcinogenicities of the two diastereoraers is rather due to the preferential 

removal of syn adducts and not to the difference in the extent of DNA binding. The 

preferential removal of the syn- over the owft-diastereomer was later supported by the 

finding of Mcleod et al. in their study of (±)-Jv«- and (±)-a«ft-BPDE adduct removal in 

Chinese haraster ovary (CHO) cells. The .^Tj-diastereomer was found to be removed twice 

as fast as the aw/z-BPDE adducts [41]. 

The importance of repair efficiency in carcinogenesis was further demonstrated in the 

repair study of cyclobutane pyrimidme diraers (CPD) in raararaalian cells using Southern 

(DNA) blot techniques and the ligation-raediated polymerase chain reaction [42,43], It was 

reported that the CPD repair is gene-specific and is more efficient on transcribed strand of 

active genes than untranscribed ones [43,44]. Also, seven of eight positions fi-equently 
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mutated in skin cancer were repaired more slowly than those at the surrounding positions on 

the same strand. Similar preferential adduct repair on the transcribed strand was observed 

with (+)-aw/z-BPDE adducts in human diploid fibroblasts [45], Base sequence dependence 

of incision repair activity of UVRABC nuclease firom E. coli at BPDE lesion sites was also 

observed [46]. 

1.2 Fluorescence Line Narrowing Spectroscopy 

1.2.1 Optical line- and spectral shapes in solid state spectroscopy 

In the solid state, all guest molecules (sample) are firozen, therefore, they have no 

freedom of translation and rotation, and at sufficiently low temperature generally only the 

lowest molecular vibrational mode is populated. Hence, it might be expected that molecular 

spectra at low temperature are much simpler than gaseous or liquid samples. However, the 

interaction between a guest molecule and its surrounding matrix molecules (host) affects the 

line and band shapes resulting in broadening of spectral bands. For simplicity, in the 

follovwng discussion the guest molecules are assumed to be isolated by the matrix at low 

temperature. 

In solid state molecular systems, there are two types of spectral broadening: 

homogeneous and inhomogeneous broadenings. First, the interaction between the guest 

molecules and the lattice vibrations (phonons) of the host results in homogeneous line 

broadenmg by "dephasing". The strongly temperature-dependent, periodical movements of 

the matrix molecules result in destruction of the phase relations between the ground state 

and excited state involved in the transition. The total temperature dependent homogeneous 

bandwidth of the spectral band is given by: 

^hom ~ ^ 
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where 1/t2 = 1/(2t]) + Hxj , '^2's the total dephasing time, X] is the life time of the excited 

state, xj is the pure dephasing time, and c is the speed of light. As the dephasing is 

mediated by phonons that are excited by thermal motion, it is strongly temperature 

dependent. Since Fiiom determines the ultimate spectral resolution attainable, low 

temperature is requbed for high resolution spectroscopy to minimize the number of 

thermally populated low-frequency phonons responsible for Fjiom- For moderate to good 

fluorophores, the homogeneous broadening from ii is very small compared to zi . For glass 

hosts, it is now firmly established that Fhom fro™' dephasing is < 0.1 cm^^ at 4.2 K 

[47,48]. The coupling between the electronic transitions of the guest molecules and the 

matrix phonons also has marked effects on the general shape of the spectral lines. In soUd 

state spectroscopy, the spectral line consists of a narrow line, the "zero-phonon line (ZPL)", 

accompanied by a broad band, the "phonon wing (PW)", at its low energy side in the 

emission spectrum. The phonon wing is the resuh of the electron-phonon coupling which 

will be discussed separately in the next section. 

Secondly, the energies of the electronic states of guest molecules are affected by 

static interactions with the lattice [49]. If the host lattice is perfect, the interaction is the 

same for all guest molecules resulting in a single spectral line as shown in Figure 1-5 A. The 

single line has a Lorentzian line shape and a homogeneous line width, However, the 

immediate environments (sites) of the guest molecules in an amorphous lattice are 

inequivalent as shown in Figure 1-5 B. The statistical distribution of the inequivalent sites 

leads to a Gaussian distribution of frequencies for any given vibronic transition. The full 

width at half maximum (FWHM) of the Gaussian distribution is referred to as 

inhomogeneous line width, Finji. Spectra of molecules dissolved in amorphous solids (such 

as glasses and polymers) usually exhibit a bandwidth, Fj^i,, of hundreds of cm*^,» 100 - 300 

cm*^. In contrast, for crystalline hosts, Fiuh is reduced by about 2 orders of magnitude. 
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Figure 1-5. Schematic view of the optical absorption lines of three (identical) guest 
molecules in a perfect crystal (A) and in an amorphous host (B). 
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In order to achieve high resolution in solid state spectroscopy, the inhomogeneous 

broadening, Finh, must be eUminated or reduced. This can be accomplished in two ways. 1) 

One can incorporate the guest molecule in a more uniform matrix. For example, by 

dissolving polycyclic aromatic hydrocarbons either in a single crystal of another hydrocarbon 

with approxunately the same molecular dimension (mixed crystal technique) or in a suitable 

n-alkane (Shpol'skii technique), one can achieve the linewidths of a few cm*^. 2) More 

generally applicable techniques are laser-based line-narrowing spectroscopies. Narrow lines 

with a homogeneous linewidth can be extracted from an inhomogeneously broadened band 

by using selective narrow line excitation. Fluorescence line narrowing spectroscopy (FLNS) 

is a low temperature solid state spectroscopic technique which eliminates or significantly 

reduces the contribution from Fi„ii to the vibronic fluorescence bandwidth. Also, spectral 

hole burning spectroscopy is another member of this class. Both fluorescence line narrowing 

and spectral hole burning spectroscopy will be discussed in separate sections later in this 

chapter. 

1.2.2 Electron-Phonon Coupling 

The theoretical background of electron-phonon coupling has been discussed 

extensively in the literature [50,51]. In this section, only a brief summary of the most 

relevant features will be given. Figure 1-6 illustrates transitions between two electronic 

states. The electronic ground state with energy Eq and the first excited state with energy Ej 

of a guest molecule are depicted in mteraction with a matrix phonon i (energy hVj). A 

number of phonon quanta are described by the harmonic oscillator model. Along the 

horizontal axis, the lattice normal coordinate q, belonging to phonon mode i is plotted. 

Because the interaction with the matrix is influenced by the electronic distribution of the 

guest, the minima in the curves for ground and excited electronic states generally lie at 
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iiVi 

Absorption Fluorescence 

Figure 1-6. Energy diagram for illustrating the origin of phonon sidebands in solid state 
electronic spectra in terms of configurational coordinates. Electronic (Eg, Ej) and phonon 
(hVi) energy levels are represented, qj is a normal coordinate of the lattice. 
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dififerent values of qj with the difference Aq^. The corresponding energy change of electronic 

excitation from Eq to Ej is proportional to the force constant ATj = nijVj^ of the harmonic 

oscillator with frequency and mass raj: 

The energy ^ph,i corresponds to half of the Stokes-shift between the maxima of the 

absorption and emission spectra. Similar to the intramolecular vibronic transitions, the 

Franck-Condon principle applies in this case, i.e. the electronic transitions take place so fast 

that the nuclear positions can be considered fixed. Thus, the electronic transitions are 

represented by vertical lines ui Figure 1-6. As illustrated in the figure, a number of 

transitions can occur with simultaneous change of the vibrational state of the host and the 

electronic state of the guest. The relative probabilities of the transitions can be well 

approximated by the Franck-Condon overlap integrals of the harmonic phonon wave 

functions. Evidently, a very large number of normal coordinates q^, each with its 

characteristic frequency Vj, are needed to describe the vibrational movements of the matrix. 

Therefore, for the overall transition, one has to simi over a large number of phonon modes. 

In practice, there are many phonons which are so close together that their states can be 

considered as a quasi-continuum. The simraiation over all these phonon states leads to the 

typical lineshape shown in Figure 1-7. 

In the following theoretical description of electron-phonon coupling, only the 

electronic transitions m which the intramolecular vibrations do not change will be considered 

for simplicity. For fluorescence, the probability of the transition from phonon mode i with 

quantum number n = 0 in the first excited electronic state to phonon mode i in the electronic 

ground state can be written as 
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zero-phonon line 

phonon wing 

CO 

Figure 1-7. Schematic representation of the shape of a vibronic band in the luminescence 
spectrum of a guest molecule in a solid matrix. 
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Pio.oi (n) - I < Xph,ii (0) I Xph,Oi (n) > P • I < cp?lS|9o > P ' g(E-Ei + nhvj) 

The function g(E-Ei + nhvj) is a line form function which ensures sharp spectral features 

with distance hvj in the fluorescence spectrum. Xph,ii Xph,oi represent the phonon wave 

functions for mode i in the electronic excited state and ground state, respectively, cpf and 

(Po are the electronic wave functions of the excited and ground state, respectively. The total 

intensity per phonon quantum requires a summation over all phonon modes. In order to 

calculate the overlap integrals < Xph,ii (0) I Xph,Oi W ^ > the harmonic approximation which 

assumes that all phonon modes are independent of each other and are described by parabolic 

potentials is used. The overlap between two displaced harmonic oscillators has been derived 

byKeU[52]. 

The ratio of the intensities of the sharp zero-phonon line (ZPL) and the broad 

phonon wing (PW) is expressed as the Debye-Waller factor, a : 

'"-T 'S |<Xph,n(0)liCph.ol(0)>l' 
izPL ^ ^PW I 

This factor can be calculated for the very low temperature limit, T 0: 

a (T = 0) = exp (-S) 

where S (T = 0) = ^ I 

lij and Vj are reduced mass and frequency of the mode i, respectively. The Huang-Rhys 

parameter S is a dimensionless quantity that indicates the strength of the electron-phonon 

coupling for a particular guest-host system. For strong electron-phonon coupling (S » 1), 

no narrow zero-phonon line will be observed in the spectra. In the limit of low temperature, 

the temperature dependence of the zero-phonon line intensity can be expressed as; 
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IzPL - exp (-S) exp -[8S(kT/hvD)2] 

In this equation, it is assumed that the Debye distribution gives a good description of the 

density of states of the phonons with the Debye frequency (Vq) for the matrix under 

consideration. Consequently, at very low temperature, the ZPL intensity decreases 

approximately quadratically with increasing temperature. This decrease is accompanied by a 

broadening and increase in intensity of the phonon wing. 

The electron-phonon coupling theory described above in principle applies to perfect 

crystals since it uses the Debye theory to describe the phonon density of states. Thus, the 

theory explains the features of mixed crystal and Shpol'skii spectra very well. However, it is 

less accurate for FLN spectra. The discrepancies can be accounted for by the fact that 

amorphous materials also possess many quasi-localized modes of very low-frequency apart 

from the delocalized acoustic phonon modes [53]. It may also be explained by modeling the 

amorphous solid as a broad distribution of two-level systems [54,55] which is coupled to the 

guest molecules levels [56]. Such theoretical aspects will be discussed further in the 

following hole burning sections. 

1.2.3 Principles of FLNS 

In 1970, Szabo [57] for the first time reported narrow lines in the fluorescence 

spectrum of Cr^"*" ions in ruby upon narrow band laser excitation at 4.2 K. Later, Personov 

et al. [58,59] observed the same effect for perylene in an ethanol glass at 4.2 K. Since then, 

it has been a subject for many studies and reviews [60-63], The physical background of 

FLN spectroscopy is reasonably well understood and the technique can be applied to 

diminish inhomogeneous broadening to a large extent in a wide variety of guest-host 

systems. 



www.manaraa.com

20 

The basic principles of FLN can be understood from Figure 1-8. Figure 1-8 is a 

schematic representation of an inhomogeneously broadened electronic absorption origin 

band (0,0) at low temperature. The relatively sharp dashed bands are zero-phonon lines 

(ZPLs) corresponding to the (0,0) transitions of the "guest" molecules occupying 

inequivalent sites. Buildmg to the higher energy side of each ZPL in the figure is a broader 

phonon wing referred to as phonon side band (PSB). First, we note that if a broad band 

excitation source is used to excite the (0,0) band, all sites will be excited and the excited 

sites will fluoresce resulting in a broad fluorescence spectrum characterized by a bandwidth 

equal to Tjnh • If a laser of frequency odl and line width Aol is used, Acol « ̂inh , only a 

subset of guest molecules whose transition frequency overlap with the laser profile will be 

excited. In the absence of intermolecular energy transfer, only this "isochromat" will 

fluoresce resulting in a "line-narrowed" fluorescence spectrum. The spectrum consists of an 

origin ZPL coincident with cdl and to lower energy numerous ZPLs corresponding to 

transitions to vibrational sublevels of the ground electronic states. Note that as ©l is tuned 

across the inhomogeneously broadened absorption, the origin ZPL ,and therefore, the entire 

fluorescence spectrum will "track" ©l • For origin band excitation, the fluorescence of the 

origin ZPL is not a useful analytical line due to interference from scattered laser light. 

For this reason and others related to selectivity, it proves advantageous to excite into 

vibronic bands (vibronically excited FLN). 

The vibronically excited FLN is demonstrated in Figure 1-9 A, in which the electronic 

ground and excited states are labeled as Sq and Sj. For simplicity, the vibrational energy 

level of Sq is depicted as isoenergetic for all sites. The site inhomogeneous broadening for 

the (0,0) absorption transition is indicated by the "slanted" solid line for Sj. The magnitude 

of is indicated to the left side of the Sj state. The slanted dashed lines for the Sj state 

denote vibrational sublevels 1, 2, 3. The absorption transitions to the vibrational levels of 
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®(0,0) 

inh 

horn 

PSB 

0) 

Figure 1-8. Schematic representaion of homogeneous (rjiom) and inhomogeneous (rjjjjj) 
broadening. Profiles of the zero-phonon lines (ZPL) and their associated phonon side 
bands (PSB) for specific sites at different firequencies are enlarged compared to the 
inhomogeneous line to provide more detail, ©l is the laser frequency which selectively 
excites a narrow isochromat of an inhomogeneously broadened absorption band. 
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(3,0) 

(2.0) 

(1.0) 

(0.0) 

inh 

(0.0); (0.0), 

Figure 1-9. Schematic for vibronically excited fluorescence line narrowing. A: The slope of 
excited-state levels represents the variation of their energies as a function of site. 
denotes the inhomogeneous broadening of the (0,0) transition. Using laser excitation of 
firequency ©l , two subsets of molecules within Fijjji are selectively excited. B: Schematic of 
the resulting fluorescence spectrum. Fluorescence from two isochromats results in a 
doubling of the (0,0) transitions as well as the (0,1) vibronic transitions. 
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the excited state are labeled as (1,0), etc., where the zero indicates the absorption originates 

from the zero-point level of Sq (it is assumed that at low temperature, all molecules reside at 

the zero-point level of the ground state). The thick solid vertical arrow is the laser excitation 

frequency (o)l) chosen to excite isochromats A and B belonging to (1,0) and (2,0) 

transitions, respectively. The intersections of the horizontal dash-dot line with the dashed 

lines are the locations of the isochromats in the sites with the same excitation energy but at 

different vibrational sublevels. The two initially excited isochromats rapidly relax (squiggly 

downward arrows) to their respective and correlated zero-point distribution in the site (A 

and B). The fluorescence transitions from these two positions to the zero point and a 

vibrational level of Sq are shown as solid arrows. The resulting line-narrowed fluorescence 

spectrum is given in Figure 1-9B. Note that the pure electronic transition (0,0) and a 

transition to the first vibronic level (0,1) are doublets. If the dissolved molecules have 

several closely spaced vibronic levels near the laser frequency (cOl) in the excited state, the 

corresponding more complex "multiplet" appears in the (0,0) transition region of the 

fluorescence spectrum. More importandy, the spectrum yields both the ground and excited-

state vibrational frequencies. For example, the displacements of (0,0)̂  and (0,0)b from col 
yield the excited state vibrational frequencies (o)q and cop') and the displacements of (0,1)^ 

and (0,1)b from corresponding (0,0)^ and (0,0)b yield the ground state vibrational 

frequencies (o)„"and cOp"). The (0,0)^ and (0,0)B lines comprise what will be referred to as 

multiplet origin structure. By varying the excitation frequency cOl , different multiplet origin 

structure will be observed; it is possible to determine all active excited-state fundamental 

intramolecular vibrations by appropriate variations of (Oj^. The intramolecular vibrational 

sublevels of Sj have a lifetime of ~1 psec due to rapid relaxation to the zero-point level of 

Sj. Therefore, the multiplet origin bands will generally be not sharper than ~5 cm*^. 
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The relatively broad PSB that builds on the ZPL in absorption and fluorescence is 

contributed by 1-, 2-, — phonon transitions. The Franck-Condon factor for the ZPL is 

exp(-S) s Fq while that for the r-phonon process is [exp(-S)]S7r! = Pp Noting that SPj = 1, 

it is easy to show that for S < 1 (weak coupling), the ZPL is dominant while for S > 1, 

(strong coupling) the PSB is dominant For large S, the ZPL becomes Franck-Condon 

forbidden and FLN will not be possible. 

Since the first publication of the FLN spectrum of perylene in ethanol in 1972, a 

large number of compounds in a variety of matrices have been studied [64-68]. Especially, 

many polycyclic aromatic hydrocarbons and biological compounds (e.g. porphyrins and 

chlorophylls, adducts to DNA) have been measured [69-73]. The fact that many polar and 

even ionic species yield FLN spectra in suitable solvents presents a very strong advantage of 

this line narrowing technique to achieve vibrationally resolved high resolution spectroscopy. 

1.3 Spectral Hole Burning Spectroscopy 

Solid state spectral hole burning is another example of a line narrowing technique 

which reduces or eliminates the effects of inhomogeneous broadening while retaining the 

advantages of utilizing glassy matrices. The observation of spectral holes requires a 

mechanism by which electronic excitation of a chromophore can alter its transition energy. 

As mentioned previously in section 1.2.3, irradiation into an inhomogeneously broadened 

line with a narrow-band laser of frequency (Dl excites a group of molecules with the same 

transition energy. The electronic transition energy of these molecules can be changed by one 

of several mechanisms, resulting in depletion of these chromophores which can be excited at 

the excitation frequency cOl- Depending on the mechanism, there are three types of hole 

burning: photochemical hole burning (PHB), nonphotochemical hole burning (NPHB), and 
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population bottleneck hole burning. The mechanisms of these three types of hole burning 

will be discussed in the next section. 

A zero-phonon transition is an electronic transition with no net change in the number 

of phonons. The ultimate spectral resolution is determined by the homogeneous linewidth, 

rhom» which is related to the total dephasing time X2 by Fhom = (see section 1.2.1). 

Figure 1-10 illustrates a hole burned spectrum for the origin band and a vibronic excitation. 

In the absorption spectrum shown in Figure 1-lOA, a laser with a frequency gOl (the bum 

frequency) irradiates an isochromat in the (0,0) or origin band. However, the sites that 

contribute to the origin isochromat also contribute to the (lo(,0) and (lp,0) vibronic bands. 

Thus, a zero phonon hole (ZPH) burned at can be accompanied by higher energy vibronic 

satellite holes, as indicated in the A-absorbance spectrum. Since the zero phonon line (ZPL) 

in absorption is accompanied by a phonon side band (PSB), the ZPH is accompanied by 

phonon side band holes (PSBH). The PSBH at the higher energy side of the ZPH is readily 

understood and is referred to as the real-PSBH. The PSBH appearing at the lower energy 

side of the ZPH is called a pseudo-PSBH. The pseudo-PSBH is due to sites whose ZPL 

frequencies lie to the lower energy side of cOl and which absorb the laser light by virtue of 

their PSB. 

Pseudo-vibronic hole structure can also be generated. The basic idea is very similar 

to that involved in vibronically excited FLN spectroscopy. In Figure 1-lOB, the laser (to^) 

excites two isochromats (a and P) belonging to the first and second vibration, respectively. 

Since the time constant for hole burning is long relative to the vibrational relaxation time, the 

vibrational isochromats relax to their respective zero point positions in the (0,0) band prior 

to hole burning. Two ZPHs, (0,0)^ and (0,0)b, are produced, while both also lead to a hole 

at COl. The relative intensities of the former two and the latter hole at ool depend, in part, on 
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Figure 1-10. Schematic hole burning mto the origin band (A) and into the vibronic region 
(B) (see explanation in text). 
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the Franck-Condon factors for the vibrations a and p. The displacement of the vibronic 

"satellite" holes from the bum firequency yields the excited state vibrational frequencies. 

1.3.1 Hole Burning Mechanisms 

Three basic hole-buming mechanisms, photochemical hole burning (PHB), 

nonphotochemical hole burning (NPHB), and population bottleneck hole burning, will be 

discussed in this section. PHB describes hole burning which results from a chemical reaction 

initiated in an excited state of the chromophore. For PHB, therefore, photoreactivity of the 

absorbing chromophore is required. PHB can be observed in both amorphous and crystalline 

hosts. The reaction initiated by photoexcitation can be tautomerization, bond-breaking, 

isomerization and so on. Via this mechanism, selective photobleaching of the absorption 

spectmm can be achieved. Photochemical hole burning was first observed for free base 

phthalocyanine in n-octane, where the PHB is caused by an intramolecular hydrogen 

tautomerization. In PHB, the antihole (absorption increase due to products) is usually not 

near the zero-phonon hole and is much broader than its parent hole because of the 

inhomogeneous broadening of the zero phonon lines of the photoproducts. 

Unlike photochemical hole burning, non-photochemical hole burning involves only 

the modification of the interaction between the microscopic enviroimient (host) and the 

impurity (guest) molecules. On excitation, a reorientation of the guest molecule with respect 

to its environment takes place. Since the host configurations need to be changed, NPHB is a 

characteristic of amorphous systems with a few exceptions [48]. NPHB is a reversible 

process, and nonphotochemical holes often disappear after increasing the temperature. The 

absorption positions of the products (antiholes) for nonphotochemical processes are located 

not very far from the original absorption position. In 1972, Anderson et al. [54] and Phillips 

[55], independentiy, proposed the so-called two-level system (TLS). The proposed TLS 
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theoiy is that in any glass system, there should be a certain number of atoms or groups of 

atoms which may occupy, with nearly equal probability, two equilibrium positions separated 

by an energy barrier. At very low temperatures, atoms or groups of atoms cannot be 

thermally activated over the bander, but can bypass the barrier by tunneling. In 1978, the 

two-level system model based on the coupling of the electronic transition of the guest to the 

glass (TLSgjjt) was utilized to explain the NPHB mechanism [74]. In this mechanism, 

extrinsic TLSs CTLSg^tt) ^ suggested to be strongly associated with the absorbing center 

and are responsible for the initiation of hole burning. The rate-determining step for hole 

formation is phonon-assisted tunneling within TLSe^f The intrinsic bistable configuration of 

the host itself is denoted by TLSi„t' the intrinsic TLSs (TLSj^t) were proposed to be 

responsible for optical dephasing [48,74]. The standard TLSg^ model for NPHB is 

illustrated in Figure 1-11. The superscripts a and p denote the potential energy curve for 

TLSg^tt coupled to the ground and excited electronic state of the guest. The asymmetry 

parameter (A) and the barrier height (V) are used to describe the TLSg^^^ system. In the 

figure, excitation of the zero-phonon transition is pictured as occurring on the left (L) with 

the critical L R relaxation taking place in the excited electronic state (|}). There is a 

distribution of the tunneling ftequency, W, depends on the tunneling parameter ^ by W = co 

oexp(-A,). It is assumed that X value is Gaussian distributed with mean value Ao and variance 

<^}? [75]. Note that the transition frequency of the absorber in the postbum configuration is 

higher than the one for the prebum configuration. The mechanistic model for NPHB was 

further developed by Shu et al. [76]. In their NPHB model, it was proposed that NPHB 

occurs as a result of an outside-in hierarchy of dynamical events which are triggered by 

electronic excitation and result in an increase in the fiiee volume of the probe for the 

postbum configuration. The fi:ee volume increase for the guest in its iiuier shell of host 

molecules was proposed to occur following relatively fast configurational relaxation 
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W = COq exp i-X) TLS|« 

TLS" ext 

Figure 1-11. Potential energy diagrams for a two-level system (TLS) coupled to a guest 
molecule in its ground state (a) and excited electronic state (P). A is the asymmetry 
parameter; V, the barrier height; and q, the intermolecular coordinate. The tunneling 
frequency, W, depends on the tunneling parameter A, which is defined as d(2mV)I/2/h, where 
m is the tunneling mass, cog is the laser bum frequency. 
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processes in the outer shell which lead to a reduction in the excess free volume of the outer 

shell. 

Population bottleneck hole burning utilizes a third, long-lived, level to store the 

population depleted from the ground state [77,78]. The technique was first described for 

Pr^""" in a LaF3 crystal, in which nuclear hyperfine levels provided the bottleneck state [79]. 

In the case of zinc porphyrin in n-octane [80], the long-lived triplet level was used as a 

population reservoir to observe a hole in the ^ Sq transition. As expected, the hole 

lifetime was shown to be the same as the triplet lifetime. 

1.3.2 Dispersive Nonphotochemical Hole Growth Kinetics 

The dispersive kinetics of zero-phonon hole growth is based on the hole burning 

mechanism proposed by Shu and Small [76,81]. The rate determining step for hole 

formation is phonon-assisted tunneling of TLi^ (P denotes the excited electronic state of 

the guest), and the intrinsic disorder of the glass leads to a distribution of tunneling 

frequencies. The tunneling is strongly biased toward processes that involve phonon 

emission, that is, the excited-state energy of the probe molecule in the postbum 

configuration is lower than that in the prebum configuration [76]. For a single TLS^d»the 

downward phonon-assisted relaxation rate, R, is [47,82]: 

R = (3f2\V2E/16rcpc5^)(<nE>r + 1) 

where + W^, E is the tunneling splitting, A and W are the asymmetry parameter and 

tunneling frequency, respectively (see Figure 1-11), p is the sample density and c is an 

average sound velocity. The average phonon thermal occupation number <nE>T = 

(exp(E/kT) -1)-^. The f parameter is related to tiie TLS^^t deformation potential. 
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In cases where the antihole is significantly shifted away fix)m the ZPL which is 

burned, the tunnel splitting E may be replaced by A. Because the tunneling frequency W 

depends exponentially on the tunnel parameter A,, W = coq exp(-X), and X depends on several 

parameters subject to statistical fluctuations due to disorder, the distribution of relaxation 

rates (R) can be assumed to be derived from the distribution function for W. Thus, R can be 

written: 

R = Qq exp(-2A,) 

where Qq - 3<f^Axao2/l67tpc5ft5^ Because A. > 0, R^ax = Qq • We define f(R) as the 

normalized distribution function for the TLS^xt relaxation rate so that 

D(t) = J?»dRf(R) essp 

1 - D(t) is the fractional 2PH deptii following a bum for time t with a bum photon flux P, a 

is the peak absorption cross section for the ZPL and (|>(R) = R/(R + k) is the NPHB quantum 

yield for a probe excited state lifetime of k-^. The expression for D(t) is valid for a bum 

laser with frequency width much narrower than the homogeneous line width of the ZPL. 

For kinetic simulations, it is convenient to employ a particular form for D(t) which is 

equivalent to the expression above: 

D(t)= [(V^)a;^r^J^dA,expl-(A,->.o)^ /a^lejq3(-Pa(t)(A.)fl 

and by defining x = (A, - , D(t) becomes: 

m = (27i)-i>2j::^d»Bq<-x2/21e£Fl-Zo^(x)U 

where Sq = PcJ^oX and ̂ (x) = exp[-2(Afl-a;^x)]. When fitting the equation to the 

experimental hole growth curves, a lenormalization is necessary to take into account the 
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off-set due to electron-phonon coupling: the maximum fractional hole depth is exp(-S) 

where S is the Huang-Rhys factor. 

1.3.3 Applications of Spectral Hole Burning to Biological Systems 

Spectral hole-buming spectroscopies (nonphotochemical, photochemical and 

population botdeneck) have been applied to many photosynthetic antenna and reaction 

center protein-cofactor (e.g. chlorophyll) complexes with considerable success [77]. During 

the past several years, it has been established that NPHB is a general and facile phenomenon 

for chromophoies in proteins (chlorophylls, caratenoids, pheophytins and hemes) and for dye 

molecules such as riiodamine 640, cresyl violet and nile blue in hydrogen bonding hosts (e.g. 

glycerol, ethanol, polyvinyl alcohol). Also, NPHB was shown to be facile for DNA-PAH 

adducts and for molecules intercalated into DNA [83,84]. 

Recently, Hayes and Small showed that NPHB can be used to investigate the 

structural details of various materials [85-87]. They also proposed that NPHB can be 

applied as a probe for imaging biological systems (DNA, proteins, membranes, nuclei, 

organelles of the cell, cell ensembles and tissues), since the many hole burning characteristics 

of chromophores are very sensitive to their environments. The ZPH width depends on the 

total dephasing time of the optical transition. A ZPH burned into the origin absorption band 

has homogeneous width 27, where 7 is the homogeneous width of the associated ZPL in 

absorption. As discussed in the previous section, 7 is given by 7 = (7cr2c)-^ where ^2 is the 

total dephasing time of the chromophore's optical transition. There are many studies 

showing that the width of the ZPH depends strongly on the amorphous host in which the 

chromophore is imbedded [88-90]. In the case of polymer hosts, it has been shown tiiat the 

ZPH width is reduced as the rigidity of the polymer is increased [91]. Also, the pressure 

dependence of the hole width [92] can be a probe for detecting abnormal cells smce a change 
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in compressibility of the host is believed to accompany the gross sdructural change of the cell 

transforming from normal to abnormal. Also the hole growth rate was reported to depend 

strongly on the host environment [86]. 

1.4 Dissertation Organization 

This dissertation contains the candidate's original work on line narrowing 

spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes. Chapter 1 

contains a general introduction about BFDE (benzo[a]pyrene diol epoxide), fluorescence 

line-narrowing spectroscopy and hole burning spectroscopy. Chapter 2 describes the 

experimental apparatus used for the dissertation work. Chapter 3,4 and 5 contain 

published papers about BPDE-N^-dG adducts in oligonucleotides in vitro and in the DNA 

of mouse skin in vivo. Chapter 6 contains a spectroscopic study of T0-PR0-3-DNA 

complexes using absorption and fluorescence spectroscopy in conjunction with 

nonphotochemical hole burning. The additional hole burning data of TO-PRO-3 bound to 

various DNAs are contained in Appendix A. References are found at the end of each 

chapter. Future prospects are also suggested in each chapter. 
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CHAPTER!. INSTRUMENTATION 

2.1 Fluorescence Line Narrowing (FLN) and Non Line Narrowing (NLN) 

Spectroscopy 

A block diagram of the fluorescence line narrowing (FLN) spectroscopy and the low 

resolution fluorescence (non-lme narrowing, NLN) measurement apparatus is shown in 

Figure 2-1. The excitation source used is a Lambda-Physik FL-2002 tunable dye laser 

pumped by a Lambda Physik Lextra 100 XeCl excuner laser system. The excimer laser 

system provides high energy (200 mj/pulse) pulses with a repetition rate of up to 100 Hz at 

308 nm. For gated mode detection, a Lambda Physik EMG-97 zero-drift controller is used 

to trigger a high voltage gate pulse generator (Princeton Instruments FG-100), which 

controls both the adjustable delay time and the width of a temporal detection window. The 

corresponding dye laser uses a grating in a Littrow geometry for wavelength selection which 

provides 0.22 cm"^ spectral line width. For dye laser, p-terphenyl (332-350 nm) and DMQ 

(346-377 nm) dyes from Exciton Inc. were employed to select the excitation wavelength. 

Typically, the attenuated laser output (50 mW/cm^ intensity) was used for the FLN and 

NLN measurement. The laser beam is shaped into a 7 mm x 2 mm beam by using a quartz 

biconvex cylindrical lens for complete irradiation of samples. A 3-liter double-nested glass 

low temperature cryostat manufactured by H. S. Martin Inc. was used for both 4.2 K (FLN) 

and 77 K (NLN) optical experiments. A sample in a quartz tube (2 mm i.d.) was directly 

immersed in liquid helium (or liquid nitrogen) to obtain spectra at 4.2 K (or 77 K). 

Fluorescence was collected at right angle to the excitation. The collected fluorescence was 

dispersed by a McPherson 2016 1-meter focal length monochromator and detected by a 

Princeton Instruments IRY 1024/G/B mtensified photodiode array. For the FLN 

measurement, the monochromator was equipped with a 2400 grooves/mm grating providing 
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Figure 2-1. Block diagram of FLN and NLN spectroscopy instrumentation: S, sample in a 
copper holder; L, lens; P, prism; BS, beam splitter. 
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an 18 nm spectral window at 0.1 nm resolution. For the low resolution fluorescence (NLN) 

emission spectra, a 150 grooves/mm grating was employed to provide a 150 imi window and 

0.8 nm resolution. In the case of FLN measurement at 620 nm - 650 nm excitation 

wavelength, the laser output from Coherent 699-29 ring dye laser system (DCM Special dye 

from Exciton) pumped with an argon ion laser (6 W output) was used as an excitation 

source. 

2.2 Spectral Hole Burning Spectroscopy 

Absorption and fluorescence excitation spectroscopy were used for the spectral hole 

burning studies in this work. The laser output from Coherent 699-29 ring dye laser pumped 

by an argon ion laser (6 W output) was used as an excitation source for the hole burning 

and the fluorescence excitation spectroscopy. DCM Special dye (Exciton) was used giving a 

tuning range from 615 to 706 nm. A block diagram of the apparatus used for measuring the 

fluorescence excitation spectra is shown in Figure 2-2. For long-range scans of the 

excitation spectrum, the intracavity etalon was removed from the ring dye laser and the 

wavelength was scanned by rotating the birefnngent filter stack. In this configuration, the 

laser line width was 0.1 cm-^. For hole burning and high resolution scans (scanning for hole 

viddth), the intracavity etalons were reinstalled giving a laser line width of < 20 MHz. The 

wavelength was continuously monitored with a Burleigh wavemeter. Dye laser output 

power was stabilized with a laser amplitude stabilizer (Cambridge Research and 

Instrumentation, model LS.lOO) and monitored with a power meter (Newport Co. model 

1825-C) equipped with a diode (Newport Co. model 818-SL). The laser power density for 

the hole burning was varied with density filters from 250 nW/cm^ to 300 ^W/cm^. For the 

fluorescence excitation spectra before and after burning, the laser was attenuated to ~250 

nW/cm^. The laser illuminated -0.35 cm^ area of a sample. The sample solutions in quartz 
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Figure 2-2. Block diagram of fluorescence excitation spectroscopy instrumentation: S, 
sample in a copper holder; L, lens; P, prism; BS, beam splitter; D, photodiode; F, long-pass 
filter; NDF, neutral density filter; PMT, photomultiplier tube. 
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tubes (2 mm i.d.) were first cooled slowly to liquid nitrogen temperature, then cooled to 

liquid helium temperature in a Janis model 8-DT Super Vari-Temp cryostat A temperature 

lower than 4.2 K was achieved by pumping the cryostat filled with liquid helium. The 

temperature was measured with a silicon diode thermometer (Lake Shore Cryotronics Inc. 

model DT-470-SD-13) mounted on a copper frame which holds the sample. Fluorescence 

from the sample was long pass filtered and detected with an RCA C31034 GaAs 

photomultiplier tube. The signal from the photomultiplier tube was amplified (Stanford 

Research Systems SR-445 preamplifier) and digitized with a Stanford Research Systems SR-

400 photon counter. 

Absorption spectra of samples were measured with Bruker IFS 120 HR Fourier 

transform infrared spectrometer (FT-IR) as shown in Figure 2-3. With a tungsten light 

source, a CaF beam splitter and a silicon diode detector, spectra over the range from 25000 

to 10000 cm-i were acquired with a resolution of 1 or 4 cm-^. The sample solution was 

placed between two quartz plates separated by an o-shaped teflon spacer (1 mm thick) and 

the quartz plates were mounted in a copper sample holder with screws. The hole burning 

light source was the same as the one for the fluorescence excitation spectroscopy. The 

sample solutions were first cooled slowly to liquid nitrogen temperature in order to produce 

good glassy samples, then cooled to liquid helium temperature in a Janis model 8-DT Super 

Vaii-Temp cryostat for hole burning studies or kept in liquid nitrogen temperature for a 

simple low temperature absorption measurement The sample temperature was measured 

with a silicon diode thermometer (Lake Shore Cryotronics model DT-500K) mounted on the 

copper sample holder. The sample was placed to make a 45 degree angle to both the 

burning laser beam and the probe beam from FT-IR. The burning laser beam was defocused 

to illuminate the whole sample while the probe beam was not 
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Figure 2-3. Block diagram of absorption measurement: S, sample which was placed 
between two quartz plates (1.3 cm x 1.3 cm) with a teflon spacer (1 mm thick) and 
mounted in a copper holder with screws; L, lens; P, prism. 
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CHAPTER 3. CONFORMATIONAL STUDIES OF THE (+)-TRANS-, 

{-)-TRANS-, (+)-C/S-, AND (-)-C/5 ADDUCTS OF ANTI-

BENZO[a]PYRENE DIOLEPOXIDE TO N^-dG IN DUPLEX 

OLIGONUCLEOTIDES USING POLYACRYLAMIDE GEL 

ELECTROPHORESIS AND LOW-TEMPERATURE FLUORESCENCE 

SPECTROSCOPY 

A paper published in Biophysical Chemistry, 56, 281-296 (1995) 

Myungkoo Suh, Freek Ariese, Gerald J. Small, and Ryszard Jankowiak, 

Tong-Ming Liu, and Nicholas E. Geacintov 

ABSTRACT 

Using polyacrylamide gel electrophoresis (PAGE) and low temperature, laser-

induced fluorescence line narrowing (FLN) and non-line narrowing (NLN) 

spectroscopic methods, the conformational characteristics of stereochemically defined 

and site-specific adducts derived from the binding of 7P,8a-dihydoxy-9a,10a-epoxy-

7,8,9,10-tetrahydrobenzo[c]pyrene (anft'-BPDE, a metabolite of the environmental 

carcinogen benzo[fl]pyrene), to DNA were studied. The focus of these studies was on 

the four stereochemically distinct onri-BPDE-modified duplexes 

5'-d(CCATCGCTACC) • (GGTAGCGATGG), where G denotes the lesion site derived 

from trans or cis addition of the exocyclic amino group of guanine to the CIO position 

of either (+) or (-)-fl«ft'-BPDE. PAGE experiments under non-denaturing conditions 

showed that the (+)-trans adduct causes a significantly greater retardation in the 

electrophoretic mobility than the other three adducts, probably the result of important 
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adduct-induced distortions of the duplex structure. Low-temperature fluorescence 

studies in frozen aqueous buffer matrices showed that the {+)-trans adduct adopts 

primarily an external conformation with only minor interactions with the helix, but a 

smaller fraction (~25%) appears to exists in a partially base-stacked conformation. The 

i-)-trans adduct exists almost exclusively (-97%) in an external conformation. Both cis 

adducts were found to be intercalated; strong electron-phonon coupling observed in their 

FLN spectra provided additional evidence for significant ti-ti stacking interactions 

between the pyrenyl residues and the bases. FLN spectroscopy is shown to be suitable 

for distinguishing between trans and cis adducts, but lesions with either (+)- or (-)-

trans, or (+)- or (-)-cis stereochemical characteristics showed very similar vibrational 

patterns. Addition of glycerol (50%, v/v) to the matrix caused a partial disruption of the 

chromophore-base stacking interactions for most adducts, but the (-) cis isomer showed 

a strong blue-shift and unusual vibrational frequencies. Low-temperature fluorescence 

spectroscopy techniques are most suitable for distinguishing between different 

conformational benzo[a]pyrene diol epoxide-DNA adduct types; because of the 

sensitivity of these methods, they may provide important information necessary for an 

understanding of the biological effects of the stereochemically distinct BPDE-guanine 

lesions. 

INTRODUCTION 

Benzo[fl]pyrene is one of the most intensively studied environmental carcinogens 

[1,2]. Several enzymatic pathways have been reported to catalyze the binding of this 

compound or its metabolites to DNA, including monooxygenation [3] and one-electron 

oxidation routes [4]. Stable DNA adducts are mainly formed via covalent binding of the 

exocyclic amino group of guanine or adenine to the biologically most active and 
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chemically reactive metabolic intermediate 7,8-dihydroxy-9,10-epoxy-7,8,9,10-

tetrahydrobenzo[c]pyrene [5]. There are two diastereomeric forms of this molecule, 7P 

,8a-dihydoxy-9a,10a-epoxy-7,8,9,10-tetrahydrobenzo[fl]pyrene {anti-BPDE), and the 7 

p,8a,9a,10p-stereoisomer (syw-BPDE). Each of these diastereomers can be resolved 

into (+) and (-) enantiomers, and each enantiomer can react via cis or trans addition at 

the CIO position with the exocyclic amino groups of guanine and adenine residues [6,7]. 

In mammalian cells, racemic (±)-anft'-BPDE is more mutagenic tiian (±)-j}'«-BPDE 

[8,9]. Furthermore, {+)-anti BPDE is strongly tumorigenic while {-)-anti BPDE is not 

[10,11]. These differences in biological activity are believed to be related to different 

conformations of the carcinogen-DNA adducts [12]. BPDE adducts may adopt various 

conformations depending on the stereochemistry of the adduct [13] and also depending 

on the nature of the flanking bases [14,15]. 

BPDE-DNA adduct conformations have been studied by several techniques, 

including circular/linear dichroism [14,16], fluorescence spectroscopy [15,17,18], 

polyacrylamide gel electrophoresis (PAGE) [19], high resolution NMR methods [20], 

and molecular modelling [21]. In the case of randomly modified BPDE-DNA adducts, 

the interpretation of data is complicated whenever (1) racemic i±)-anti BPDE is used, 

(2) mixtures of cis- and trans adducts are formed, (3) different DNA bases are 

modified, and (4) the sequence contexts in which the different lesions are embedded are 

not defined. In order to overcome these difficulties it is necessary to synthesize 

stereochemically pure BPDE adducts bound to a specific group of a given base in a well 

defined oligonucleotide sequence. Geacintov and coworkers have developed a direct 

synthetic approach in which BPDE is reacted with a given single stranded 

oligonucleotide [13,22]. The resulting mbcture of BPDE-modified and unmodified 

oligonucleotide strands with different bases modified and/or different adduct 
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stereochemistries are separated from ane another by means of HPLC techniques, and 

annealed with the complementary strand. This approach was recently used for studying 

the effects of flanking bases on the characteristics of (+)-trans-anti BPDE-N^-dG 

adducts [15,23]. For our present study in which conformational differences are 

investigated as a function of adduct stereochemistry, the same approach was used to 

synthesize the oligonucleotide d(CCATCGCTACC) • (GGTAGCGATGG) containing 

the {+)-trans-, {-)-trans-, (+)-cw, and {-)-cis- adducts of cnrf-BPDE bound to the 

exocyclic aminogroup of the central dG. The chemical structures of the four adducts are 

presented in Fig. 3-1. The solution conformations of three of these adducts, bound to 

the same duplex oligonucleotide, have recently been established by high resolution 

NMR and molecular mechanics modeling techniques. It was found that the (+)-trans 

and {-)-trans adducts are both located in the minor groove, but point in opposite 

directions (towards the 3' and 5' end of the modified strand, respectively) [20,24]. The 

(+)-cis adduct, on the other hand, was found to be characterized by a base-displacement 

intercalation model, in which the pyrenyl residue is intercalated, while the modified 

guanine residue and cytidine residue on the partner strand are displaced into the minor 

and major grooves, respectively [25]. 

In this paper we describe conformational studies of these four stereoisomeric 

BPDE adducts, employing low temperature laser induced fluorescence spectroscopy 

under line narrowing (FLN) and non-line narrowing (NLN) conditions [26], as well as 

polyacrylamide gel electrophoresis [19]. The determination of BPDE-DNA adduct 

conformations by NMR techniques requires milligram quantities of purified BPDE-

modified oligonucleotides. Fluorescence techniques on the other hand are very sensitive 

and subnanogram quantities of adducts are often sufficient for identification of the types 

of adducts [4,26] or their conformational characteristics [15,18,19,27,28]. In addition. 



www.manaraa.com

49 

I 
DNA 

(+)-trans (+)-cis 

(-)-trans 

Figure 3-1. Stereochemical configurations of the four isomeric adducts of fl«n'-BPDE. 
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fluorescence techniques are capable of distinguishing conformational equilibria on 

nanosecond and submicrosecond time scales. By comparing results obtained for identical 

BPDE-modified oligonucleotide duplexes obtained by NMR and by fluorescence 

methods, more exact interpretations of the lower resolution but higher sensitivity optical 

spectroscopic techniques such as UV absorbance [29] and fluorescence (this work) 

become feasible. 

MATERIALS AND METHODS 

Preparation of the stereospecifically pure adducted oligonucleotides. 

Racemic cnft-BPDE was purchased from the National Cancer Institute Chemical 

Carcinogen Reference Standard Repository (Chemsyn, Inc.), Lot no. CSL-91-320-29-

17A, batch 15. The synthesis of the covalent trans adducts bound to the 

d(CCATCGCTACC) sequence at dG was carried out starting from racemic a«n-BPDE 

using previously described methods [13,22,30]. Briefly, the stereochemically different 

11-mer oligonucleotide adducts were separated and purified by reverse phase HPLC 

methods. The stereochemical characteristics of the adducts were ascertained by 

enzymatically digesting the BPDE-modified oligonucleotides to the BPDE-dG 

mononucleoside levels, and comparing their HPLC retention times and CD spectra with 

those of {-^ytrans-, i-)-trans-, i+)-cis-, and (-)-cw-a«ft"-BPDE-N2-dG adduct standards 

as described by Cheng et al. [7]. The stereochemically pure BPDE-modified 

oligonucleotide strands 5'-d(CCATCGCTACC) were mixed with equimolar amounts of 

the complementary strands 5'-d(GGTAGCGATGG), heated to 65 "C, and slowly cooled 

to room temperature. The melting points, Tm, of the duplexes are above 40 °C; typical 

melting profiles have been published [29]. 
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For low-temperature spectroscopic measurements, samples in aqueous buffer 

(20 mM sodium phosphate, 0.1 M NaCl, pH 7.0) or 50:50 mixed with glycerol, were 

transfered to 30 |aL quartz sample tubes, sealed with rubber septa, and stored at -20 

until further use. Adduct concentrations of all samples were 4 x 10-6 M in aqueous 

buffer or 2 X lO^^M in 50 % glycerol. 

Low temperature fluorescence measurements 

The instrumentation used for low-temperature laser-excited fluorescence 

spectroscopy has been described elsewhere [26]. Here, only the most important 

specifications of the apparatus are summarized. The excitation source was a Lambda 

Physik EMG 103 MSG XeCl excimer laser/FL-2002 dye laser system. Adduct samples 

were probed with the laser under non-line-narrowing conditions (77 K, S2 <- Sq 

excitation) or line-narrowing conditions (4.2 K, SI SQ excitation). Fluorescence was 

dispersed by a McPherson 2061 1-m monochromator; for NLN measurements the 

resolution was 0.6 nm (100 |im slit and 150 G/mm grating), while FLN spectra were 

recorded using a resolution of 0.08 nm (200 fim slit and 2400 G/mm grating. 

Depending on the grating used the spectral window covered by the active part of the 

Princeton Instruments IRY-1024/GRB intensified photodiode array detector was 

160 nm, or 8 nm, respectively. For gated detection the output of a reference photodiode 

was used to trigger a Princeton Instruments FG-100 high-voltage pulse generator. Most 

spectra were recorded using a 45 ns delay and a 400 ns gate width. Before the 

measurements, samples were thawed from -20 to room temperature, then first slowly 

cooled on ice before rapid cooling by the cryogenic liquid. This procedure had 

previously been found to yield maximum duplexation [15]. 
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Polyacrylamide gel electrophoresis 

The oligonucIeotide-BPDE adducts, complementary strands, and unmodified 

oligonucleotides (controls) were labeled separately with [y-^^P]ATP (New England 

Nuclear) using T4 polynucleotide Kinase from Sigma Inc. Labeling was terminated by 

incubation at 80 "C for 25 minutes. Electrophoresis of duplex oligomers was carried out 

in two ways: labeled oligonucleotide-BPDE adducts were annealed to the corresponding 

unlabeled complementary strand, while labeled complementary oligonucleotides were 

annealed to non-labeled adducted oligonucleotides. In both cases the non-labeled strands 

were in slight molar excess. Annealing solutions were cooled down from 70 oC to 4 

over 2 hours and kept at 4 "C for additional 20 minutes, then dried under a vacuum in a 

Speed Vac concentrator. The dried pellets were resuspended in loading buffer (pH 8.3) 

containing 9 mM tris-borate, 0.2 mM Na2EDTA, xylene cyanole FF tracking dye 

(Sigma), and 30% glycerol (v/v). 

20% native polyacrylamide gel (19:1 acrylamide:bis-acrylamide v/v in 53 mM 

tris-borate, 1.2 mM Na2EDTA, 50 mM NaCl, pH = 8.3 buffer solution) was prepared 

for the 38 cm x 50 cm Bio-Rad Sequi-Gen Nucleic Acids Sequencing system. Thickness 

was 0.4 mm. The gel was polymerized at ambient temperature, then placed in a cold 

room (40C) and incubated in the miming buffer overnight before electrophoresis. 

Separation was canied out for 60 hours at 320 V and ~ 15 mA. The gel was kept at 

4 ± 1 OC in the cold room throughout the separation. Autoradiography of gels using 

various exposure times was done at ambient temperature using Kodak X-ray films. 
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RESULTS AND DISCUSSION 

PAGE analysis of modified oligonucleotide structures 

The autoradiogram in Fig.3-2 demonstrates that the PAGE separation of single 

stranded oligonucleotide samples was excellent, and therefore could be used as an 

independent purity check. No cross-contamination was observed for the i+)-trans, 

(+)-cis, and (-)-cis adducts; overexposure revealed only a very low level of 

contamination (< 0.1 %) in the {-)-trans sample. Adduct decomposition by hydrolysis 

would produce a ben2o[a]pyrene tetrol and die unmodified oligonucleotide, but this was 

not observed for any of the samples. 

In single stranded form, all modified strands move significantly slower than the 

unmodified control. The retardation of the BPDE-modified oligonucleotides was in the 

order {+)-trans- > {-)-trans- > i+)-cis- > (-)-cw anri-BPDE adduct (see Fig. 3-2; 

lanes 1, 2, 3 and 4, respectively). Similar results, but with less pronounced differences 

in mobilities, were obtained by Shibutani et al. [30] for the same adducts embedded in 

an 18-mer oligonucleotide. The mobilities must reflect different translational friction 

coefficients since molecular weight and charge are the same for each adducted strand. 

However, adduct conformations in single stranded oligonucleotides are not the focus of 

this paper. 

In the case of double stranded modified oligonucleotides, the same mobilities were 

observed independent of whetiier the modified strand or the complement strand was 

labeled (only die mobilities of the former are shown in Fig. 3-2). This indicates that 

under our experimental conditions (native gel, T = 4 ^C) the modified 11-mer 

oligonucleotides were in complete duplex form, in agreement with the thermal melting 

studies of Ya et al. [29]. As shown in Fig. 3-2, the i-)-trans-, {+)-cis- and i-)-cis-anti-
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Figure 3-2. Autoradiogram showing electrophoretic mobilities (migration direction 
downwards) of single strand (lanes 1 through 4) and duplex (lanes 5 through 8) 
oligonucleotides modified by {+)-trans (lanes 1 and 5), (-)-trans (lanes 2 and 6), 
(+)-cw (lanes 3 and 7), and (-)-cw (lanes 4 and 8) adducts of anti-B?DE. Lanes 9 and 
10 represent the single stranded and duplex unmodified controls, respectively. 
Conditions: T = 4° C, native 20% polyacrylamide slab gel, 50 mM NaCl, 0.6X TBE 
buffer. 
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BPDE-adducted duplexes (lanes 6, 7 and 8, respectively) move slightly slower than the 

unmodified duplex (lane 10). Considering the molecular weight increase (5%) by adduct 

formation, these three adducts show minimal deviation in mobility from the duplex 

unmodified oligonucleotide. On the other hand, the mobility of the {+)-trans adduct 

(lane 5) was drastically reduced. According to the NMR studies of Cosman et al. [20] 

and de los Santos et al. [24], the extent of solvent exposure of the {+)-trans- and (-)-

trans-anti-'&?DE adducts are comparable; for both adducts the aromatic moiety is 

located in the minor groove with one side exposed to the solvent. On the other hand, for 

the (+)- cis adduct (and also for the (-)-cw adduct as will be shown below) the pyrenyl 

system is embedded within the double helix. Thus, there seems to be no clear 

correlation between die observed gel mobilities and the external/internal character of the 

adduct. If the observed mobilities of the double stranded modified oligonucleotides are 

not governed by adduct-solvent interactions, then they must be the result of different 

adduct-induced distortions of the duplex structure. Several experimental findings 

indicate bending of the helix at the site of the (+)-rra/w-fl/irf-BPDE adduct. Linear 

dichroism studies of BPDE-DNA adducts with external character, which is characteristic 

for the {+)-trans-anti-B?\yE adducts, suggested that there is a kink or flexible joint at 

the site of lesion [31,32]. It was also reported that DNA (145 - 185 base pairs) modified 

with (+)-flnft'-BPDE showed reduced electrophoretic mobility, and bending of the helix 

was suggested [33]. In addition, theoretical molecular dynamics simulation studies 

reported that the (+)-frfl/w-an/z-BPDE adduct produced severe helical bending in a 

duplex dodecamer, while the (-)-rrfl«j-a/ift'-BPDE adduct caused only minimal distortion 

[21]. Our PAGE results confirm those findings, showing that the {+)-trans-anti-B?TliE 

adduct causes indeed a severe distortion of the overall helix structure, but that the 

helical structures of the duplex oligonucleotides modified with i-)-trans-, i+)-cis- or 
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{-)-cis-anti-B?DE are minimally disturbed. These results are also consistent with those 

of Mao [34] and Xu et al. [35] who have shown that upon ligation of BPDE-modified 

oligonucleotides 11-23 base pairs long, only the {+)-trans BPDE-modified 

oligonucleotides are capable of forming small, covalently closed minicircles. This 

clearly indicates that only the (-l-)-fra/w-BPDE-N2-dG lesions are associated with a 

flexible hinge joint or bend at the site of the lesion. 

General remarks conceming low-temperature matrices 

Before we discuss the NLN and FLN spectra of the different adduct 

stereoisomers a short discussion of low-temperature fluorescence measurements and the 

matrices used in our experiments is appropriate. Compared to conventional fluorescence 

spectrometry at room temperature, carrying out the measurements at 77K under non-line 

narrowing conditions offers several advantages for these types of adducts. Reduced 

spectral broadening is important in order to observe the sometimes subtle differences in 

fluorescence spectra. Furthermore, quenching phenomena, affecting the fluorescence of 

intercalated adducts less strongly than that of external adducts [13,16,17], play only a 

minor role at cryogenic temperatures; all adduct types exhibit comparable fluorescence 

lifetimes (ranging firom 150-200 ns). Apart from the obvious increase in signal intensity, 

this also means that when non-selective excitation is applied to a mixture of different 

conformations all adduct types can be observed with similar sensitivities. The relative 

intensities of different emission bands thus give a direct indication of the relative 

concentrations of the particular species. 

All samples were studied in two matrices: aqueous buffer and aqueous 

buffer/glycerol 50:50 v/v ("glass"). Obviously the conformations encountered in 

aqueous buffer mimick the situation in a cellular environment most closely. The 
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addition of glycerol serves several purposes: it increases the solvent compatibility 

towards the aromatic moiety of ±e adduct and has a destabilizing effect on the DNA 

structure. Conformational changes induced by the addition of glycerol thus provide 

qualitative information regarding the stability of the adduct conformation in aqueous 

buffer. At the same time the decrease in base-chromophore interactions (weaker 

electron-phonon coupling) usually leads to better resolved FLN spectra [18], which is 

useful if the frequencies of the vibrational modes are to be used for identification 

purposes [4,19,36]. 

An important question is whether fluorescence line-narrowing spectroscopy is 

also applicable to frozen aqueous samples that could lead to a crystalline environment. 

However, due to the presence of buffer salts [37] and also the flexible nature of the 

oligonucleotides the direct surrounding of the chromophore moieties is highly 

disordered, as reflected in our FLN spectra (see below), and also our preliminary hole 

burning experiments (data not shown). An ordered environment could cause matrbc-

induced (Shpol'skii-type) line-narrowing, but that was never observed for adduct 

samples in aqueous buffer. Thus, aromatic fluorophores bound to DNA or 

oligonucleotides in frozen aqueous buffer matrices experience a matrix inhomogeneity 

similar to that of common low-temperature glasses. Apparently, the occurrence of 

polycrystalline regions away from the oligonucleotides has no influence on the 

spectroscopic properties of the adducts. It should also be mentioned that light scattering 

problems in partially polycrystalline aqueous samples are easily overcome if 

time-resolved detection can be used. 

It should be emphasized that during the cooling procedure only conformations 

that are thermally accessible at ambient temperature can be trapped. At elevated 

temperatures the adducts will show a broad distribution of conformations, and some 
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higher-energy conformations may not be trapped during cooling. However, the 

conformations corresponding to an absolute or local minumum of the potential energy 

surface will also exist at cryogenic temperatures. Therefore, if two or more distinct 

molecular conformations are observed in a low temperature fluorescence experiment, it 

can be concluded that these conformations do contribute to the conformational 

equilibrium in solution at biological temperatures, but they may not represent the full 

room temperature distribution. Since the matrix in the immediate vicinity of the adduct 

is of an amorphous nature, the possibility that otherwise improbable conformations are 

being induced by matrbc crystalli2ation can be excluded. 

Non-Iine-aarrowing (S2 <- Sq) fluorescence spectroscopy 

In this section non-line narrowed (NLN) fluorescence spectra will be shown for 

BPDE adducts bound to double stranded oligonucleotides or to deoxyguanosine only. 

Based on the extent of the red-shift of the fluorescence origin band, we define three 

different adduct conformations as (±)-l, (±)-2, and (+)-3 [18,27]. These conformations 

are characterized by increasing stacking interactions with the bases and decreasing 

accesibility to quenchers, and are assigned as external, partially base stacked, and 

intercalated adduct types, respectively [18,27]. Most NLN spectra were obtained using 

excitation at 308 or 343 nm, wavelengths with poor selectivity that one can use to excite 

external, partially base stacked, and intercalated conformations at the same time with 

roughly comparable efficiencies (at cryogenic temperatures all adduct types exhibit 

similar fluorescence lifetimes, while the molar extinction coefficients are not 

significantly different). Excitation at 355 nm is used to selectively excite intercalated 

adducts [13]. Selective excitation of external adducts is not possible; the existence of 

such conformations can only be infered via spectral deconvolution (see below). 
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C+)-trans-anti BPDE adduct 

NLN fluorescence spectra obtained for the {+)-trans isomer in double stranded 

oligonucleotide, as well as bound to the nucleoside dG only, are shown in Fig. 3-3. The 

solvent matrices were aqueous buffer (curves a, b, d) or aqueous buffer/glycerol 50:50 

(curve c). For comparison, curve 3d is the NLN spectrum of the i+)-trans adduct 

bound to guanosine only, showing the typical spectral characteristics (emission 

maximum 376.3 nm, bandwidth ~ 130 cm"^ FWHM) of the BPDE adduct in the 

absence of interaction with the DNA helix. Emission maxima and widths of the 0-0 

origin bands of all adduct isomers are listed in Table 3-1. Spectrum a in Fig. 3-3 with 

its relatively broad 0-0 band (~ 350 cm'^) corresponds to a mixture of conformations. 

The major one with its maximum at 378.6 nm (a moderate red shift compared to the 

mononucleoside adduct in spectrum 3d) is assigned, based on our previous nomenclature 

[18,27], as a (-l-)l external conformation. This agrees very well with the data, reported 

for this adduct in solution by Cosman et al [20], showing that the pyrenyl moiety is 

located in the minor groove with one side exposed to the solvent. However, the skewed 

peak shape of the fluorescence origin band in spectrum 3a indicates that the sample was 

not conformationally pure, as revealed by selective excitation at 355 nm (see spectrum 

3b). This fraction, with its maximum at 380.3 and band width T = -240 cm-l is 

assigned as a (+)-2 type, partially base-stacked conformation; its relative abundance is 

estimated to be -25 % (see Table 3-1). This is an unexpected finding, since the NMR 

spectra recorded by Cosman et al. [20] showed no indication of a heterogeneous 

equilibrium of conformations. The differences in the apparent conformational adduct 

heterogeneities observed by the fluorescence and high resolution NMR methods are 

presently not well understood. We note, however, some important experimental 
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Figure 3-3. Non-line narrowed (0,0) fluorescence origin bands of the (+)-trans-
adduct of anft'-BPDE in duplex oligonucleotide (T = 77 K) Curve a: spectrum in 
aqueous buffer; "ksx = 343 nm. Curve b; spectrum in aqueous buffer; Xex = 355 nm. 
Curve c: spectrum in 50 % glycerol matrix; X«x = 343 nm. Curve d: spectrum of the 
same adduct bound to dG only; aqueous buffer; Xex = 308 nm. 
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Table 3-1. Spectral characteristics of the o«//-BPDE adduct conformations 

Oligonucleotides 
in aqueous buffer 

{+)-lrans 
Confonn. type (0.0)^ 
Abundance" 

(+)-! 378.4 180 
major (-75%) 

(-yirans 
Conform, type (0,0) T 

Abundance 

(-)-» 378.4 170 
major (-97%) 

(+)-c/j 

Conform, type (0,0) 
Abundance 

(+)-l -378 
minor (-6%) 

(-)-«> 

Confonn. type (0,0) 
Abundance 

(-)-! 378.5 
minor (-8%) 

(+)-2 380.3 -240 
minor(-25%) 

(-)-2 380.4 -300 
minor (-3%) 

(+)-3 381.0 300 
major (-94%) 

(-)-3 381.3 270 
major (-92%) 

Oligonucleotides (+)-l 378.3 200 (-)-I 377.7 200 (+)-l 377.8 230 
in 50% glycerol minor (-12%) 

(+)-3 381.4 330 
major (-88%) 

(-)-l*'' 375.7 160 
minor (-15%) 

(-)-3 381.1 300 
major (-85%) 

Mononucleosides 
in aqueous buffer 

376.3 130 376.3 130 376.3 130 376.3 130 

Mononucleosides 
in 50% glycerol 

376.5 150 376.5 150 376.5 160 376.5 160 

a Maximum of fluorescence (0,0) origin band after deconvolution (in nm). 

b r is the FWHM obtained by doubling the half widtli at half maximum measured at the high energy side of the band (in cm"')-
c Relative abundances are estimates obtained upon deconvolution of non-selectively excited NLN spectra. 
d For this adduct the confonnation of the saturated ring is believed to have undergone an important change (see text). 
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differences in these two experiments, for instance, time scales and concentrations. A 

search for an explanation for these conformational heterogeneity effects would have to 

begin with an investigation of some of these variables, but was beyond the scope of this 

work. 

As observed in previous studies for partially base stacked conformations [38], 

the addition of glycerol disrupted the weak stacking interactions and the minor (+)-2 

contribution observed in aqueous buffer disappeared, leaving a purely external (+)-! 

type conformation. This effect is believed to be due to an increased solvent 

compatibility towards the aromatic moiety. The resulting spectrum, presented in Fig. 3-

3c, is narrower (~200 cm*^) and does not show any dependence on the excitation 

wavelength. 

NLN spectra of the single stranded {+)-trans adduct sample (not shown) 

indicates that in aqueous buffer a very broad distribution of external and base-stacked 

conformations exists (bandwidth ~430 cm-^; emission maximum ~381 nm). Upon 

dilution from 4 x 10"^ M to 2 x 10"^ M a significant spectral narrowing and a blue-shift 

to 376.7 nm is observed. Similar effects were observed upon dilution of the single 

stranded samples of the (-)-trans and (-F)-cw adducts, but not for the (-)-cis adduct. 

Studies in progress are expected to clarify these phenomena for single stranded 

oligonucleotides. In this paper we focus only on structural properties of adducts in 

duplex oligonucleotides. 

(-Vtrans-anti BPDE adduct 

NLN spectra of the double stranded {-)-trans adduct, obtained i : ing non

selective excitation at 343 nm, are shown in Fig. 3-4, curves a and b. The emission 
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Figure 3-4. Non-line narrowed (0,0) fluorescence origin bands of the (-)-fm/ty-adduct 
of fl/ift'-BPDE in duplex oligonucleotide (T = 77 K). Curve a: spectrum in aqueous 
buffer; Xex = 343 nm. Curve b: spectrum in 50 % glycerol matrix; A,ex = 343 nm. 
Curve c: spectrum of the same adduct bound to dG only; aqueous buffer; A,ex = 308 nm. 
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maximum at 378.4 nm observed in aqueous buffer (spectrum 4a) corresponds to a (-)-l 

external adduct type with only weak interactions with the DNA helix. The 0-0 origin 

band of the i-)-trans adduct is very narrow (~ 170 cm^^), indicating minimal 

heterogeneity. Excitation wavelength dependence was practically absent; a very small 

contribution with a red-shifted emission was observed when 355 nm excitation was 

employed (spectrum not shown). Addition of glycerol to the sample did not have a large 

impact on the width of its NLN spectrum (compare spectrum 4b with 4a). However, the 

(0-0) origin band was found to undergo a 0.7 nm blue-shift, which was not observed for 

die i+)-trans adduct. The bottom curve 4c shows the NLN spectrum of the {-)-trans 

adduct to dG for comparison. Our conformational assignment as a (-)-l external adduct 

is in agreement with the studies of de los Santos et al. [24], who reported that the 

(-)-trans adduct is located in the minor groove with one face of the aromatic moiety 

exposed to the solvent. The fact that the two trans adducts behave differently upon the 

addition of glycerol indicates that the interactions with the DNA are not identical. 

(+)-cis-anti BPDE adduct 

The NLN spectra of the cis adduct of i+)-anti BPDE are shown in Fig. 3-5. In 

aqueous buffer matrix (spectrum 5a, employing non-selective excitation at 308 nm) the 

major conformation showed strong chromophore-base interactions: the width is ca. 

300 cm-i, while the emission maximum at 381.0 nm is significantly red-shifted 

compared to tiiose of the two trans adducts discussed above. This indicates that in the 

duplex oligonucleotide the adduct is held in an internal (+)-3 type conformation. These 

results agree with the findings of Cosman et al. [25], who recently established the major 

solution conformation of this adduct to be of the intercalated type, with the pyrenyl 

moiety being sandwiched between the two neighboring cytosine bases and displacing not 
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Figure 3-5. Non-line narrowed (0,0) fluorescence origin bands of the (-f-)-aj-adduct of 
fl/jrf-BPDE in duplex oligonucleotide (T = 77 K). Curve a: spectrum in aqueous buffer; 
Xex = 308 nm. Curve b: spectrum in aqueous buffer; Xex = 355 nm. Dashed curve: 
difference spectrum 5a - 5b. Curve c: spectrum in 50 % glycerol matrbc; A,ex = 308 nm. 
Curve d: spectrum in 50 % glycerol matrix; X&x = 355 nm. Curve e: spectrum of the 
same adduct bound to dG only; aqueous buffer; Xex = 308 nm. 



www.manaraa.com

66 

only the adducted guanine into the minor groove, but also the opposite cytosine residue 

on the partner strand into the major groove. When using selective excitation at 355 nm a 

minor conformational heterogeneity is observed, as can be seen by comparing spectra 5a 

and 5b. The dashed curve represents the difference spectrum. This minor fraction, with 

its origin band around 378 nm, is less efficiendy excited at 355 nm, indicating that its 

conformation must be of the external type [13]. Also Cosman et al. [25] noticed the 

existence of a minor, non-intercalative conformation in their NMR study, in agreement 

with our findings. 

Addition of glycerol to the aqueous sample increases the solvent compatibility 

towards the aromatic moiety and may also disrupt the helical structure. Both effects can 

be illustrated in the case of the {+)-cis adduct. The very broad origin band of the 

duplex sample in 50% glycerol indicates a mixture of external and intercalated adducts 

(see Fig, 3-5c), The glycerol causes a larger fraction of the adduct molecules to adopt 

an external conformation (larger shoulder around 378 nm in spectrum 5c than in 

spectrum 5a). The fact that the major origin band is still at 381.4 nm shows that, unlike 

the partially base-stacked (+)-2 conformation observed for the {+)-trans adduct, the 

truly intercalated (+)-3 type conformation is relatively stable in this matrix, as was 

previously demonstrated for these adducts in double stranded oligonucleotides [38] and 

in DNA [27]. The 30 cm^i increase in spectral bandwidth of the intercalated 

conformation (compare curves 5d and 5b, both obtained employing selective excitation 

at 355 nm; see also Table 3-1) presumably reflects a destabilization of the helical 

structure in the 50% glycerol matrix, leading to a broader distribution of intercalated 

structures. Again the bottom curve 5e shows the NLN spectrum of the (+)-cis-anti 

BPDE-dG adduct for comparison. 
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i-Vcis-anti BPDE adduct 

NLN spectra of the (-)-cis-anti adduct are shown in Fig, 3-6. The spectrum of 

the duplex sample in aqueous buffer (curve 6a) is very similar to that of the (+)-dj 

adduct. The 0-0 band is red-shifted to 381.3 nm, which according to our nomenclature 

corresponds to a (-)-3 type internal adduct conformation [18,27], and almost as broad as 

that of the (-f-)-cis adduct. For this adduct no independent structure characterization by 

means of high resolution NMR spectroscopy has yet been published, but based on the 

similarity between the spectral properties of the two cw-adducts we conclude that also 

the (r)-cis anti-BPDE adduct adopts an intercalated conformation [13]. Further evidence 

will be provided in die next section by means of FLN spectroscopy. The sample showed 

only minor excitation wavelength dependence, as can be seen by comparing curves 6a 

and 6b. The dashed curve represents the difference spectrum 6a-6b. As in the case of 

die i+)-cis adduct, a minor contribution (~5 %) of an adduct with an external 

conformation can be discerned around 378.5 nm. In the 50% glycerol matrix the 

majority of the adduct molecules are still intercalated, which means that also for this 

adduct the intercalated conformation is relatively stable (see curve 6c). However, an 

important fraction has adopted a conformation that shows an emission maximum around 

375.7 nm, more blue-shifted than observed for the external fractions of the other three 

adduct samples and even more blue-shifted than the mononucleotide adduct (curve 6e). 

When 355 nm excitation is used only the intercalated fraction of the conformational 

mixture is observed (spectrum 6d). More information on the nature of this peculiar 

conformational equilibrium was obtained using FLN spectroscopy (see below). 

Finally, we note that under NLN conditions the spectra of the single nucleoside 

adducts are very similar for all four stereoisomers (compare the bottom spectra of Figs. 

3-3 and 3-6), and practically independent of the solvent matrix used (see Table 3-1). 
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Figure 3-6. Non-line narrowed (0,0) fluorescence origin bands of the (-)-cw-adduct of 
a«n'-BPDE in duplex oligonucleotide (T = 77 K). Curve a: spectrum in aqueous buffer; 
Xex = 308 nm. Curve b: spectrum in aqueous buffer; Xex = 355 nm. Dashed curve: 
difference spectrum 5a - 5b. Curve c: spectrum in 50 % glycerol matrix; Xex = 308 nm. 
Curve d; spectrum in 50 % glycerol matrix; Xt\ = 355 nm. Curve e; spectrum of the 
same adduct bound to dG only; aqueous buffer; A.ex = 308 nm. 
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However, cis- and trans isomers are easily distinguished under FLN conditions, as will 

be shown in the next section. 

Fluorescence line narrowing spectroscopy 

More detailed structural information concerning the different BPDE-adducts can 

be obtained using fluorescence line narrowing spectroscopy. In die study of carcinogen-

DNA adducts this technique may be used to obtain extra conformational information or 

it can serve chemical/stereochemical identification purposes [26]. Both aspects will now 

be discussed separately. 

In a typical vibronically excited FLN spectrum each Si vibrational frequency 

will appear as a sharp line (the zero-phonon line, ZPL), accompanied by a broader band 

at longer-wavelength. The latter, so-called phonon side band (PSB), is attributed to 

molecules that lose part of their excitation energy to lattice vibrations (phonons). The 

ZPL/PSB intensity ratio strongly depends on temperature and the electronic coupling 

with the matrix, and can thus provide information on the microenvironment around the 

chromophore. It was shown by Haarer [39] that Ti-molecular charge-transfer states are 

characterized by very strong coupling. Jankowiak and coworkers [27] have shown that 

the relative intensities of the ZPLs in die FLN excitation spectra of various i+)-anti 

BPDE-DNA adducts increases in the order (+)-3 intercalated < (+)-2 partially base-

stacked < (+)-l external, reflecting a decrease in coupling strength between the 

chromophore and the bases in the same order. 

FLN spectra obtained for the four adduct stereoisomers in double-stranded 

oligonucleotides in aqueous buffer matrix are shown in Fig. 3-7. The spectra were 

recorded at liquid helium temperature (4.2 K) using 369.48 nm excitation; at this 

wavelength broadbanded emission due to uncorrelated S2-S0 excitation can be ruled out. 
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Figure 3-7. FLN spectra of the duplex oligonucleotides in aqueous buffer, containing 
different stereoisomeric aMft'-BPDE-N^-dG adducts. Curve a: (+)-trans; curve b: 
(-)-trans-, curve c: (+)-cw; curve d: {-)-cis adduct. T = 4.2 K; Xex = 369.48 nm. 
Zero-phonon lines are labeled with their excited-state vibrational frequencies (in cm-1). 
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In the 378 nm region the i+ytrans-anti adduct yields a fairly well resolved FLN 

spectrum with strong ZPL's (curve 7a; spectra obtained using other excitation 

wavelengths not shown). This indicates that there are no strong stacking interactions 

with the bases. These findings for the major adduct are in full agreement with the 

solution conformation established for the i+ytrans adduct by Cosman et al. [20], in 

which the pyrenyl moiety is situated in the minor groove, with one side interacting with 

the sugar-phosphate backbone and one side exposed to the solvent. However, the broad 

emission band underlying the low-energy side of the spectrum ( — 380 nm) indicates the 

presence of a second, minor conformation with stronger stacking interactions, in 

agreement with the NLN results discussed above and shown in Fig. 3-3, spectra a and 

b. 

In contrast, the FLN spectrum of the {-)-trans-anti adduct (curve 7b) does not 

show any broadbanded emission indicative of stacking interactions. This adduct exists in 

a pure (-)-l type external conformation. These results are in full agreement with the 

solution conformation reported by de los Santos et al [24], in which the adduct is 

located in the minor groove (pointing towards the 3' terminus of the modified strand) 

and interacts only with the solvent and the sugar-phosphate backbone. 

Spectrum 7c shows that the FLN spectrum of the i+)-cis-anti adduct is distinctly 

different. The intensities of the ZPLs are relatively weak and superimposed on a strong 

broadbanded emission at the low-energy side of the spectrum. This proves that the broad 

0-0 band around 381 nm observed at 77 K (Fig. 3-5a) is not due to a broad 

heterogeneous distribution of adduct conformations, but to strong electron-phonon 

coupling (7t-7i interactions). Again, these findings are in full agreement with the 

intercalated conformation established for this adduct by Cosman et al. [25]. The ZPL's 
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in tlie 378 nm region belong to the minor external conformation shown in Fig. 3-5 

(difference spectrum 5a-5b). 

Curve 7d shows that the FLN spectrum of the (-)-c« adduct is very similar to 

that of its i+)-cis counterpart. The (-)-cw adduct shows also relatively weak ZPLs with 

a large contribution firom phonon side bands, indicating that also for diis adduct the 

major conformation, assigned as (-)-3, is one in which the chromophore experiences 

very strong coupling with the bases. These spectra confirm our conclusion of the 

previous subsection that also the (-)-cw adduct adopts primarily an intercalated 

conformation. Also for this adduct the ZPL's in the 378 nm region belong to the minor 

external conformation (see Fig. 3-6, difference spectrum 6a-6b). 

The FLN spectra obtained in 50 % glycerol matrix are presented in Fig. 3-8 and 

confirm the NLN results discussed above. In the case of the (+)-trans-anti adduct the 

weak stacking interactions are disrupted, resulting in a purely external (+)1 type 

conformation (see spectrum 3-8a). The spectrum of {-)-trans-anti BPDE is blue-shifted 

by 30 cm-i upon the addition of glycerol, and as a result die low-firequency modes 

around 376 run increase in intensity, while the vibronic lines in the 380 nm region 

decrease(compare spectra 3-8b and 3-7b). Such behavior is not observed for the 

{+)-trans isomer. These differences could be related to the findings of de los Santos et 

al. [24], who stated that the interactions between the aromatic moiety and the minor 

groove are not identical for the two trans isomers. Figure 3-8c illustrates again that for 

the i+)-cis adduct even in 50 % glycerol the intercalated structure remains largely 

intact, but that a minor contribution of an external (+)-l conformation is also present in 

this matrix. The relative contribution of this minor firaction is larger in this matrix than 

in aqueous buffer (compare spectra 8c and 7c). Curve 8d shows the FLN spectrum 

obtained for the (-)-ds adduct. The intercalated conformation remains the major one. 
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Figure 3-8. FLN spectra of the duplex oligonucleotides in 50 % glycerol matrix, 
containing different stereoisomeric anrf-BPDE-N^-dG adducts. Curve a: {+)-tram\ curve b: 
{-)-trans; curve c; (+)-cw; curve d: (-)-cw adduct. T = 4.2 K; ?i.ex = 369.48 nm. Zero-
phonon lines are labeled with their excited-state vibrational frequencies (in cm-1). 
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but for this adduct, besides the minor external contribution around 378 nm which was 

also observed in aqueous buffer, the presence of an unknown conformation witii an 

unusually blue-shifted 0-0 band around 376 nm is also observed in this matrix (see 

below for further details). 

When comparing the vibrational firequency patterns of the four adduct 

stereoisomers in Figures 3-7 and 3-8, it is observed that trans and cis adducts are very 

easily distinguished (see also spectra 9b and 9c for the mononucleoside adducts). For 

example, ZPLs at 549 and 761 cm'l are indicative of trans adducts, while strong lines at 

539, 740, or 890 cm"^ are observed for the cis adducts. However, when comparing the 

vibrational frequencies of the two trans spectra there is only a small number of obvious 

differences (e.g. the 579 cm-^ mode) and also for the two cis adducts only minor 

differences were observed (e.g. the 600-620 cm-^ region). In the case of the 

stereoisomeric mononucleoside, {+)-trans, {-)-trans, (+)-c«, and (-)-cw-adducts yield 

the NLN spectra which are similar in all cases, but the FLN spectra are diffirent for the 

trans and the cis adducts. However, (-H)- and {-)-trans or cis adducts cannot be 

distinguished from one another (also when different excitation wavelengths were used to 

explore other regions of the Sj excited state; spectra not shown). Apparently, the 

influence of the ribose moiety on the fluorescence characteristics of these stereoisomeric 

BPDE-mononucleoside adducts is negligible. The major excited state vibrational 

frequencies are listed in Table 3-2. 

Different interactions with the DNA helix, duplex formation, or solvent effects 

may change the intensity distribution of the ZPLs or increase the intensity of the broad 

phonon side bands, but the frequencies remain usually unchanged. One of the exceptions 

observed for these adducts is the splitting of the 579 band for the (-)-trans isomer as 

shown in Figure 3-7b, which is even more pronounced in the 50 % glycerol matrix 
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Table 3-2: Most prominent excited state vibrational frequencies in FLN spectra of anti-
BPDE adducts^ 

{+)-transl{r)-trans (-i-)-dj/(-)-cw 

453 453 449 
464 465 461 
483 481 486 
502 496 499 
549 539 539 

579(+);575/583(-)C 579(-F);574(-) 564 
604/620 601/621 

647 647 
720 740 719 
761 769 755 

791 784 
830 840 842 

890 863 
957 949 955 
1044 1026 1029 
1108 1108 1110 
1384 1383 1365/1378 
1441 1441 1441 

^ Vibrational frequencies are identical for (-f-) and (-)-trans, and for (-h) and {-)-cis 
adducts, unless otherwise indicated. Frequencies are given in wavenumbers; accuracy ± 
2 cm'l. 

^ Refers to the blue-shifted component of the (-)-cw- adduct spectra (only observed in 
duplex samples in water/glycerol matrix). 
c Splitting of the 579 cm~l band depends on duplexation, solvent matrix, and DNA 
sequence (see also text). 
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(curve 8b). No splitting was observed in single stranded samples or in the FLN spectra 

of the {+)-trans- and {-)-trans-anti BPDE-dG adducts. It appears that the splitting must 

reflect how this particular duplex structure influences the conformation of the (-)-tmns 

adduct. However, it should be mentioned that this effect cannot be used in a general 

way to distinguish {-)-trans from {•'r)-trans adducts, since splitting was also observed 

for the {+)-tran5 isomer in a d(...TGG...) (...CCA...) sequence [15]. 

Comparison of the spectra of the two cis adducts reveals that in aqueous buffer 

matrix the vibrational frequencies are very similar. Most firequencies also agree well 

with those found for the cw-anft-RPDE-dG adducts. Only minor differences were 

observed in tiie 575-620 cm-^ region. Interestingly, in the 50 % glycerol matrix only die 

low-energy part of the two cis spectra (curves 8c and 8d) are similar. The blue-shifted 

fraction of the (-)-cis adduct, on the other hand, shows an unusual vibrational pattern, 

different from that observed in aqueous buffer, different from that of the (+)-cis 

adduct, and also different from that of the free {-)-cis-anti BPDE-dG adduct. The latter 

is illustrated in Figure 3-9, comparing the FLN spectra of the (-)-cw adduct in duplex 

oligonucleotide (curve 9a) and bound to dG only (curve 9b). It is clear that for the 

ir)-cis adduct the addition of glycerol has induced more than just a diminished 

interaction with the bases. It spears that the effect is caused by a structural change in 

the saturated ring, having a direct influence on the vibrational properties of the aromatic 

moiety. Multidimensional NMR studies and/or molecular modelling will be needed to 

test this hypothesis and to help answering the question why this phenomenon is observed 

for die (-)-aj adduct only. 
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Figure 3-9. FLN spectra of c/ift'-BPDE adducts in 50 % glycerol matrix. Curve a: 
(-)-m adduct bound to duplex oligonucleotide. Curve b: spectrum of the (-)-cw adduct 
bound to dG only. Curve c: spectrum of the {-)-trans adduct bound to dG only. 
T = 4.2 K, X«x = 367.58 nm. Zero-phonon lines are labeled with their excited-state 
vibrational frequencies (in cm-1). 
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CONCLUSIONS 

The gel electrophoresis experiments of the modified duplex oligonucleotides 

show that the {+)-trans adduct causes a significant retardation, but that the mobility of 

the other three adducts is similar to that of the unmodified control. On the other hand, 

the fluorescence data show that the adduct conformation and the extent of solvent 

exposure are comparable for the two trans- and for the two cis adducts. For adducted 

oligonucleotides in double stranded form we conclude that PAGE and fluorescence 

spectroscopy may be regarded as complementary techniques, the former providing more 

information on perturbation of the overall helical structure, the latter reflecting the 

direct environment of the chromophore. 

We have demonstrated that using low-temperature fluorescence methods not only 

major but also minor adduct conformations can be characterized. Compared to room-

temperature measurements, e.g. Geacintov et al. [13], the use of cryogenic techniques 

increases sample stability, reduces spectral broadening, and because of the elimination 

of quenching processes, all adduct conformations have comparably high fluorescence 

quantum yields [28]. Another important advantage is that the same techniques can also 

be employed to study adduct conformations in single stranded oligonucleotides and in 

whole pieces of intact DNA, in solution or in solid form. 

FLN spectroscopy offers additional information on adduct conformations. Based 

on the extent of electron-phonon coupling one can distinguish between a broad 

heterogeneous distribution of external, solvent-exposed adducts (as in the case of the 

{•\-)-trans adduct in aqueous buffer) and a conformation with strong %-% interactions 

between the chromophore and its microenvironment (as was found for the intercalated 

cis adducts). Furthermore, the vibrational patterns of the FLN spectra are clearly 
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diffrent, and can be used to distinguish cis- from trans adducts. However, the FLN 

technique is often of limited value for distinguishing between (+)- and (-)-trans, or 

(+)- and (-)-cis adduct configurations. In principle, however, the FLN method may be 

capable of distinguishing adducts derived from the binding of enantiomeric diol 

epoxides to DNA; the configurations of the different OH groups and tfie orientation of 

the BPDE-N^ linkage at chiral binding sites may give rise to different degrees of 

interactions with neighboring bases, and thus to blue or red shifts in the absorption 

spectra. However, the vibrational frequencies of the chromophore are usually not 

affected. An interesting exception to this rule was observed in the case of the i-)-cis 

adduct in 50 % glycerol. 

For the {+)-trans-anti BPDE-N^-dG adduct, typically the major stable adduct 

when DNA is exposed to ben2o[fl]pyrene or BPDE [1,3,40], it was found that the 

adduct mainly exists in a partially solvent-exposed conformation with little stacking 

interaction with the bases. These results are, of course, in very good agreement with the 

solution conformation determined for the same adduct by Cosman et al [20]. However, 

the sample was not conformationally pure: we also found a minor conformation with a 

more base-stacked character. The same was observed for the (+)-trans-anti BPDE-

N2-dG adduct in oligonucleotide sequences witii a 5' guanine neighbor [15]. 

The data obtained for the (-)-trans adduct indicate that the extent of solvent 

exposure is similar to the major conformation of the i+)-trans adduct, but in the case of 

{-)-trans there is only minimal conformational heterogeneity. For this adduct the 

agreement with the NMR/molecular modelling studies of de los Santos et al. [24] is 

excellent. 

In the case of the (+)-cis adduct all spectral evidence indicates an intercalated 

structure for the major conformation, with only a very minor contribution with a more 
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solvent-exposed character. Again, diese results are in very good agreement with the 

solution structure reported by Cosman et al [25] and with other spectroscopic studies 

indicating a base-stacked, internal adduct conformation [13]. 

For the (-)-cw adduct no structure based on NMR data has yet been published. 

Earlier fluorescence data by Geacintov et al. [13] for this adduct (in a -TGT- sequence) 

showed a strong red-shift, presumably caused by intercalation. The present results, in 

particular the strong electron-phonon coupling observed in the FLN spectra and the red-

shift of die (0-0) origin band, prove that the (-)-cw adduct is indeed intercalated. 

In conclusion, we would like to stress diat fluorescence techniques cannot be 

expected to provide the same level of structural detail as two-dimensional NMR studies 

combined with molecular modelling. Fluorescence-based methods, however, are less 

time-consuming, require orders of magnitude less material, and are applicable to a 

wider range of samples, especially larger-sized native DNA molecules. At the same 

time they do provide very useftil structural information including insight on adduct 

conformations and/or conformational equilibria for adducts with different 

stereochemistries or for adducts in different base sequence contexts [15]. Such 

conformational studies could provide important clues as to which factors influence the 

kinds and frequencies of mutations observed as the result of adduct formation [41,42]. 
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CHAPTER 4. FLANKING BASE EFFECTS ON THE STRUCTURAL 

CONFORMATION OF THE (+)-r/MiVS-AArr/BENZO[a]PYRENE 

DIOLEPOXIDE ADDUCT TO N2-dG IN SEQUENCE DEFINED 

OLIGONUCLEOTIDES 

A paper published in Carcinogenesis, 15, 2891-2898 (1994) 

M. Suh, R. Jankowiak, F. Ariese, B. Mao, N. E. Geacintov, and G. J. Small 

ABSTRACT 

Conformations of the mz/u-adduct of {+)-cmti benzo[fl]pyrene 7,8-dihydrodiol-

9,10-epoxide (BPDE) to N^-guanine, the major stable DNA-adduct of the environmental 

carcinogen benzo[a]pyrene, were studied as a function of flanking bases in single 

stranded and in double stranded oligonucleotides. Three 11-mer oligonucleotides 

d(CTATGiG2G3TATC) were synthesized containing the {+)-trans-anti BPDE adduct at 

one specific guanine of the GGG sequence (a known mutational hot spot). Polyacrylamide 

gel electrophoresis of the three single stranded oligonucleotides showed that the adduct 

bound to G2 or G3 (5'-flanking base guanine) causes significantly stronger retardation 

than the same adduct bound to G^ (5'-flanking base thymine). The strength of the 

carcinogen-base interactions was reflected in the spectroscopic properties of the pyrenyl 

moiety. Low temperature fluorescence measurements under line-narrowing (FLN) or non-

line narrowing (NLN) conditions showed that in single stranded form the adduct at G2 or 

G3 (5'-flanking base guanine) adopts a conformation with strong interaction with the 

bases. This was also observed for the same adduct at the sequence AGA. In contrast, the 
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{+)-trans-anti BPDE adduct with a 5'-flanking thymine exists in a primarily helix-

external conformation. Similar differences were observed in the double stranded 

oligonucleotides: the adducts at G2 and G3 were found to exist in similar conformational 

equilibria, again with significant carcinogen-base interactions , while the adduct at 

showed a predominantly external conformation. The nature of the 3'-flanking base 

appeared to have little influence on the conformational equilibrium of the i+)-trans-anti 

BPDE-guanine adduct. The results could provide insight into the mutational specificity 

and flanking base effects observed for (+)-anti BPDE. 

FOOTNOTES 

•f" Abbreviations: 

(+)-anft'-BPDE (-t-)-7P,8a-dihydroxy-9a, lOa-epoxy-7,8,9, lO-tetrahydro-

benzo[a]pyrene (7R,8S,9S,10R configuration) 

NLN Non-line-narrowed 

FLN Fluorescence line narrowing 

PAGE Polyacrylamide gel electrophoresis 

ss Single stranded 

ds Double stranded 

+ Throughout this paper, deoxynucleotide sequences are listed in the order 5'-...-3'; bold 

typesetting is used to indicate the moditied base. 
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Introduction 

Benzo[fl]pyrene is a ubiquitous environmental carcinogen which continues to be studied 

extensively (1-3). Benzo[fl]pyrene may be enzymatically activated via one-electron 

oxidation (4) or monooxygenation pathways. One of the intermediate products of the 

monooxygenation pathway is the electrophilic and highly reactive metabolite, 

benzo[a]pyrene diol epoxide (BPDE)t. BPDE has been found to bind covalently to DNA 

(5-7), and this covalent binding is considered to be critical in the initial process of 

mutagenesis and/or carcinogenesis . The biotransformation of benzo[fl]pyrene via the 

intermediate metabolite (±)-fran5-7,8-dihydrodiol benzo[c]pyrene results in four 

stereoisomers; (±)-c«ft'-BPDE and (±)-j)'n-BPDE (2,8,9). In mammalian systems, 

racemic a/zft'-BPDE is reported to be more mutagenic than ^«-BPDE (5,10,11), although 

the binding rates to DNA are similar (12). Moreover, (-l-)-a«ft-BPDE is tumorigenic on 

mouse skin (13) and in new born mouse lung (14,15), while (-)-fl«ri-BPDE is not. 

It has been suggested that the dramatic differences in carcinogenic potency 

between closely related stereoisomers must be due to conformational differences (16). 

Many studies have been devoted to the characterization of BPDE adduct conformations 

and their effects on biological processes. The opening of the epoxide ring of BPDE can 

result in trans- or cis addition; the predominant product is usually the trans adduct bound 

to the exocyclic amino group of guanine (17). It has been demonstrated (18-20) that 

trans and cis addition products of (±)-awri-BPDE can adopt different conformations in 

duplex DNA. Also, Geacintov and coworkers (21) showed that the linear dichroism 

spectra of (+)-fl«fl'-BPDE adducts depend strongly on the DNA sequence context. Recent 

NMR studies (22) and theoretical calculations utilizing molecular mechanics methods 

(23), showed that (+)-rrfl«5-cnfz-BPDE-N2-dG in d(CCATCGCTACC) • 

d(GGTAGCGATGG) duplexes^ adopts a helix external conformation with the pyrenyl 
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residue being situated in the minor groove, pointing towards the 5'-direction of the 

modified strand. On the other hand, the (-)-rrfl/w-fl«n'-BPDE-N2-dG adducts points 

towards the 3'-direction (24). In addition, recent experiments on the enzymatic digestion 

of BPDE-modified oligonucleotides by exonucleases indicate that also in single stranded 

oligonucleotides the {+)-tran5-anti-BVT)iE adduct points towards the 5'- end , while in the 

case of the (-) trans-anti adduct it points towards the 3'- end (25), thus paralleling the 

orientation found in duplexes. One could argue that the adduct conformation in duplex 

DNA will have an influence on repair efficiency, while the conformation in single strand 

will more closely resemble the situation during replication. Thus, adduct conformations in 

both single and double stranded DNA could be important pai'ameters in mutagenesis. 

Rodriguez and Loechler found that base sequence plays a role in defming the types 

of mutations induced by (+)-fl«ft-BPDE, and that the nature of the 5'- flanking base next 

to the guanine undergoing mutation seems to be a key factor (26). The sequences AG, 

CO, GO showed G->T, G->A and G->C base pairing mutations, while in the sequence 

TG only G->T mutations were detected. The latter finding was in agreement with other 

site-specific studies (27) on the major adduct of (+)-cnri-BPDE formed at NP-dG in TG 

sequences, in which G->T mutations were also predominant. Most runs of guanines were 

found to be mutational hot spots with prevalent frameshift mutations (26). The authors 

suggested that the sequence context influences adduct conformation, which in turn 

controls mutagenic specificity. Recently, we have shown that (4-)-anri-BPDE in binding 

to the more mutagenically inclined AAGGAA and GAGGAG sequences yielded more 

internal-type adducts in comparison to otiier sequences (e.g., CCGG or TGGT) and 

random sequence DNA (28). 

Utilizing high resolution laser-induced fluorescence spectroscopy we have 

demonstrated in a number of papers (20,28,29), that (±)-anft'-BPDE adducts can exist in 
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helix external, partially base-stacked, or base-stacked (intercalated) conformations. Based 

on the extent of the red-shift observed for the origin band of the pyrenyl fluorescence 

spectrum these three conformations are denoted as (±)-l, (±)-2 and (±)-3, respectively, 

where the sign indicates whether the adduct is derived from either (-I-) or (-) a«ri-BPDE; 

a subscript j is added to indicate a conformation in single stranded form. It is important 

to note that the red-shift of the fluorescence origin band with increasing chromophore-

base interactions is accompanied by an increasing electron-phonon coupling strength of 

the optical transition. This coupling presumably reflects the amount of charge-transfer 

character of the state introduced through base-chromophore tc-tc interactions. The 

coupling is weak, intermediate, and strong for the (±)-l, (±)-2 and (±)-3 adducts, 

respectively (29). In the FLN spectra the coupling strength determines the relative 

intensities of the sharp zero phonon lines compared to the broad phonon side bands at 

longer wavelengths (30). External, solvent exposed (+)-! adducts experiencing only 

weak interactions with the bases will yield the most intense zero phonon lines. 

Stereochemically pure BPDE adducts in well defined oligonucleotide sequences 

are indispensable tools if one wants to study adduct conformation as a function of the 

flanking bases. Since runs of guanines were found to be important mutational hot spots, 

a protocol was developed for the preparation and purification of 11-mer oligonucleotides 

containing three neighboring deoxyguanines with a (+)-trans-anti BPDE adduct to one 

particular guanine base at its exocyclic amino group (B. Mao et al; manuscript 

submitted). In this oligomer, d(CTATGiG2G3TATC), the lesion is either located at Gj, 

Gj, or G3. Spectroscopic studies of these adducts were carried out utilizing laser excited 

fluorescence techniques (30) under line-narrowing conditions (FLN; Si-<-So excitation; T 

= 4.2 K) and under non-Iine-narrowing conditions (NLN; S2<-So excitation; T =77 K). 

The data obtained in this study will be compared with results from other sequences in 
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which the {+)-trans-anti BPDE adduct was flanked on the 5'-side by either C, T or A. It 

will be demonstrated that the 5'-flanking base has a major influence on the 

conformation(s) of the (+)-fra7w-cnrf-BPDE-N2-dG adduct in both ss and ds 

oligonucleotides. 

Materials and methods 

Synthesis of BPDE-modified oligodeoxynucleotides 

The detailed methods for synthesizing the (+)-ann"-BPDE modified 

oligonucleotides using a direct approach (19,31) will be fiilly described elsewhere (B. 

Mao et al.; manuscript submitted). The positions of the lesions were established by 

modified Maxam-Gilbert sequencing procedures (32). 

Gel electrophoresis 

The oligonucleotide-BPDE adducts and umnodified oligonucleotide were labeled 

with [y-32p]ATP purchased from New England Nuclear using T4 polynucleotide kinase 

from Sigma Inc. 20% native polyacrylamide gel (19:1 acrylamide:bis-acrylamide) in TBE 

buffer was prepared and used with a 38 cm x 80 cm Bio-Rad Sequi-Gen Nucleic Acids 

Sequencing system. The gel was polymerized at ambient temperature, subsequently 

placed in a cold room (4°C), and incubated in the running buffer (TBE) overnight before 

the electrophoresis. The labeled oligonucleotide-BPDE adducts were electrophoretically 

separated for 45 hours at 750 V and ~ 15 mA; the gel temperature was maintained at 

4 ± 1°C throughout the electrophoresis in the cold room. An autoradiogram of the gel 

was taken at ambient temperature with Kodak XOMAT X-ray films. 
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Low temperature fluorescence spectroscopy 

A detailed description of the apparatus used for FLN and NLN fluorescence 

spectroscopy is given elsewhere (30). Briefly, the excitation source was a Lambda 

Physik FL-2002 dye laser (dye solution: DMQ 0.2g/l in dioxane) pumped by a Lambda 

Physik EMG 102 MSG XeGl excimer laser. For gated detection the output of a reference 

photodiode triggering an FG-100 high-voltage gate pulse generator was used to define the 

temporal observation window of a Princeton Instruments IRY 1024/G/B intensified blue-

enhanced photodiode array. The detector delay time was set to 45 ns; the gate width was 

200 ns. A 1-m focal length McPherson 2016 monochromator was used to disperse the 

fluorescence. Equipped with a 2400 grooves/mm grating the monochromator provided an 

8-nm spectral window with a resolution of ~4 cm*^. The broader NLN fluorescence 

bands were recorded using the same monochromator fitted with a 1200 grooves/mm 

grating yielding a 19 nm window. NLN spectra were obtained using different excitation 

wavelengths in order to selectively excite external vs. base-stacked adducts (19). FLN 

spectra were recorded using many different excitation wavelengths, each revealing a 

small portion of the excited state vibrational frequencies. Conformational information 

can be derived from any single FLN spectrum; typically only one will be shown to 

illustrate a particular point. 

30 M-l samples of the oligonucleotide-BPDE adducts dissolved in 20 mM sodium 

phosphate, 100 mM NaGl, pH 7.0 buffer, were transferred to 2 mm i.d. quartz tubes. 

"Glass" samples were made by adding an equal volume of glycerol to each aqueous 

oligonucleotide-BPDE adduct solution. Samples were kept on ice for at least 20 minutes 

before rapid cooling in liquid helium (for FLN) or liquid nitrogen (for NLN fluorescence 

spectroscopy). The cryostat was of the double-nested glass type fitted with quartz optical 

windows. 
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Results 

PAGE of single-stranded BPDE-modified oligonucleotides 

Figure 4-1 shows the electrophoretic mobility (in native PAGE) of single stranded 

d(32p.CTATGiG2G3TATC) oligonucleotides modified by (+)-frans-fl/in-BPDE at 

different deoxyguanines (dGplane 1, dG2-lane 2, dG3-lane 3) and of the unmodified 

oligonucleotide (lane 4). In agreement with other studies (29,32,33) covalently bound 

BPDE adducts significantly decrease the electrophoretic mobility of the oligonucleotide 

strands. However, the three BPDE-modified oligonucleotides show a striking difference 

in mobility, the adduct covalently bound to dG3 or dG2 causing a significantly greater 

retardation than the same adduct bound to dGi- A direct interpretation of electrophoretic 

mobility in terms of sequence-dependent adduct conformation is impossible because in the 

case of short oligomers the mobility may also depend on the position of the adduct 

relative to the ends of the strand. Nevertheless, the large differences observed between 

the dGj and the dG2, dG3 adducts strongly suggest that the effect may be due to different 

conformational structures of the DNA-BPDE adducts (see below). 

Finally, we would like to mention that the PAGE separation is also an important 

tool to check sample purity. The autoradiogram in Fig. 4-1 shows the purity of the three 

adducted oligonucleotides. Overexposure revealed only very minor traces of cross-

contamination (ca. 0.1 %). Hydrolysis of the adduct into trans-anti BP tetraol ( which 

could interfere with the fluorescence measurements) would have yielded the unmodified 

oligonucleotide, but this was not observed in the overexposed autoradiograms (<0.1%). 
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Figure 4-1. Autoradiogram showing electrophoretic mobilities of single stranded 
d(32p-CTATGiG2G3TATC) oligonucleotides modified by {+)-trans-anti-h'?\yE at 
dOj (lane 1; highest mobility), dG2 (lane 2; medium mobility), and dG3 (lane 3; 
lowest mobility). Lane 4 corresponds to the unmodified oligonucleotide. Conditions: 
T = 4°C, 20% native polyacrylamide slab gel in TBE buffer. 
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Cooling rate effects on low temperature fluorescence spectra 

Before we describe the non-line-narrowed (NLN) and fluorescence line-narrowed 

(FLN) spectra of the adducted oligonucleotides, a short discussion of cooling rate 

dependence is appropriate. During previous low-temperature studies in our laboratory of 

single-stranded and double-stranded adducted oligonucleotides with relatively high 

melting temperatures (Tm > 40''C) no cooling rate dependence has been observed 

[unpublished results]. However, the present study indicated that in the case of adducted 

oligonucleotides with rather low mehing temperatures (Tm < 30°C) the cooling 

procedure can be a critical parameter for double stranded samples. This is demonstrated 

in Figure 4-2 showing three FLN spectra of the (-f-)-rrfin5-a/ifl'-BPDE adduct at 

d(...GiG2G3...) • d(.,.CCC...) in aqueous buffer solution. Spectrum a was obtained 

utilizing fast cooling firom approximately 0°C equilibrium; the sample was kept on ice 

before plunging it into liquid He. An identical spectrum (not shown) was obtained in the 

case of slow cooling from 0°C, in which case the sample was cooled by helium vapor in 

the top part of the cryostat before immersion into liquid He. The other spectra of the ds 

sample were obtained applying slow (curve b) or fast (curve c) cooling to 4.2 K starting 

from a room temperature (~20®C) equilibrium. The spectra show that slow or fast 

cooling from 0°C or slow cooling from 20°C led to identical results (compare spectra a 

and b), whereas fast trapping of a room temperature equilibrium yielded spectra similar to 

that of the single-stranded oligonucleotide (compare with spectrum d). Thus, we 

conclude that in case of modified duplexes with low or moderate melting temperatures, 

one has to utilize slow precooling to O'C to ensure maximum duplex formation. All 

fluorescence data presented below were recorded using that procedure. 
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Figure 4-2 Influence of cooling procedure. FLN spectra in aqueous buffer matrix 
of d(CTATGiG2G3TATC) with the i+)-trans-anti-BPDE adduct at dG2 (T = 4.2 K, 

= 369.48 tun). Curve a: double stranded, rapidly cooled from 0 ^C; curve b; 
double stranded, slowly cooled from room temperature; curve c: double stranded, 
rapidly cooled from room temperamre; curve d: single stranded sample. Zero-phonon 
lines are labeled with their excited-state vibrational firequencies. 
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NLN and FLN spectra of single stranded BPDE-modified oligonucleotides 

Figure 4-3 shows NLN fluorescence origin bands (dashed lines, obtained at 

T = 77 ; A,ex ~ 350 nm), and FLN spectra (solid lines, obtained at T = 4.2 K; "k 

ex = 365.58 nm). Frames A, B, and C refer to spectra of single-stranded 

d(CAATGiG2G3TATC) oligonucleotide in H20/buffer matrix modified at dGj, dG2, and 

dG3, respectively. In single stranded form the major conformation of the BPDE adduct 

at dGj, as demonstrated by the NLN spectrum in Fig. 4-3A, shows weaker interactions 

with the DNA bases (emission maximum of the 0-0 band ~ 378 nm) than the other two 

oligonucleotides adducted at dG2 and dGs, for which the origin bands are red-shifted to 

-380 nm. High resolution FLN spectra of the {+)-trans-anti-B>?'GE adducts to dG2 and 

dG3 are again nearly indistinguishable (frames B and C; solid lines), but very different 

from that of the dG^-adduct (frame A, solid line). These data indicate that the adducts 

with a guanine as flanking base on the 5C- side have very similar conformations, assigned 

as (+)-3s, in accordance with our previous notation (29). This means that these adducts 

show rather strong carcinogen-base stacking interactions even in single stranded form, in 

contrast to the {-^ytrans-anti BPDE adducts in TG1G2 (Figure 4-3A) and in an 

oligonucleotide containing a TGT sequence (20), in which the major conformation was 

found to be of the external (+)-ls type. 

More detailed FLN/NLN studies of the {+)-trans-anti BPDE adduct in the above 

mentioned sequences and in other ss oligonucleotides (20, M. Suh et al. in preparation) 

revealed that at low temperature often a mixture of conformations is trapped. For 

example, selective laser excitation at different wavelengths (data not shown) showed that 

in fact the broad NLN spectra in Figure 4-3 (frames A, B, and C; dashed lines) also have 

a smaller contribution of a (+)-2s (partially base-stacked) conformation with an emission 

maximum around 379 nm. This point can be further illustrated by comparing the FLN 
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Figure 4-3. NLN 0-0 fluorescence origin bands (dashed curves; T = 77 K; 
Xgx = 350 nm) and FLN spectra (solid curves; T = 4.2 K; = 365.58 nm) of single 
stranded d(CTATGiG2G3TATC) oligonucleotides in aqueous buffer with the i+)-trans-
cnfi-BPDE adduct at dGi (frame A), dG2 (frame B), and dGs (frame C). 
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spectra in aqueous buffer and 50 % glycerol matrix. Figure 4-4 shows the FLN spectra 

of G1G2G3 (curve a) and TG1G2 (curve b) in glycerol^uffer glass . Spectrum b when 

compared with the corresponding FLN spectrum in H20/buffer matrk (solid curve in 

Figure 4-3A) indicates that glycerol disrupts the carcinogen-base stacking interactions of 

the (+)-2s conformation leading to a further blue shift of the origin band ((+)-2s 

(-l-)-ls transformation). This effect is reflected in the spectra by a drastic decrease in the 

intensity of the emission lines in the 380 nm range whereas the lines in the 377 nm region 

gained (relative) intensity. In contrast, the adduct at dG2 (Figure 4-4a), with guanine on 

its 5'- side, shows only minor differences when compared with the FLN spectrum 

obtained in aqueous buffer. It appears that the (+)-3s conformation (with the 0-0 band at 

-380 nm at low temperature), in which the pyrenyl chromophore has rather strong base 

stacking interaction, is not very sensitive to the presence of glycerol (34). The same is 

also observed for the dG3 adduct (spectra not shown). These data confirm that the 

(+)-frc/is-flntt-BPDE adduct to N^-dG can adopt a (+)-3s base stacked conformation if 

the 5'-flanking base is also guanine. In order to establish whether this is also the case 

when the guanine adduct is flanked by another purine (dA) on the 5'- side, we have 

studied the d(CTATAGATATC) single stranded oligonucleotide specifically trans 

adducted by (+)-flnri-BPDE at N^-dG. The fluorescence spectra (not shown here) 

indicated that also in that sequence the major adduct conformation could be assigned as a 

(+)-3s type with strong carcinogen-base stacking interactions. 

NLN and FLN spectra of double stranded BPDE-modified oligonucleotides 

NLN fluorescence origin bands (dashed curves) and FLN spectra (solid curves) of 

the {+)-trans-anti-^?DE adduct covalently bound to dG^, dG2, and dGs in double 

stranded oligonucleotides in aqueous buffer matrix are shown in Figure 4-5 in frames A, 
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Figure 4-4. FLN spectra (T = 4.2 K, = 365.58 nm) of single-stranded 
d(CTATGiG2G3TATC) oligonucleotides in glycerol/aqueous buffer 50:50 matrix with 
the {+)-trans-anti-BPDE adduct at dG2 (curve a), and dG^ (curve b). 
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Figure 4-5. FLN and NLN spectra of double stranded d(CTATGiG2G3TATC) 
oligonucleotides in aqueous buffer matrix. Non-line narrowed 0-0 origin bands obtained 
for excitation wavelengths of 346 nm (long dashed lines) and 355 nm (short dashed 
lines). Solid curves represent FLN spectra obtained atT = 4.2 K for = 369.48 nm. 
Frames A, B, and C correspond to the i+)-trans-anti-B?DE adduct at dGi, dG2 and 
dGs, respectively. 
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B, and C, respectively. Long-dashed and short-dashed NLN spectra (normalized) were 

obtained using excitation at 346 nm and 355 nm, respectively. These wavelengths were 

chosen based on the absorption spectra presented by Geacintov et al. (19) and provide 

optimal selectivity for helix-external and base-stacked conformations, respectively. The 

NLN spectra of all three double stranded oligonucleotides are strongly dependent on 

excitation wavelength, indicating that the BPDE-adduct exists in a mixture of at least two 

different conformations. As was the case for the single stranded samples (although the 

differences are less pronounced) the FLN spectra show that the relative contribution of 

the base-stacked (+)-3 type adduct is smallest in the d(...TGiG2...) • d(...CCA...) 

duplex (Fig. 4-5A). The FLN spectra obtained for the d(...GiG2G3...) • d(...CCC...) 

and d(...G2G3T...) • d(...ACC...) duplexes, presented in Figs. 4-5B and 5C, show much 

stronger broadbanded emission around 381 nm, which is typical for a base-stacked (or 

intercalative) (+)-3 conformation (29). 

The above qualitative analysis is supported by the NLN and FLN spectra obtained 

in 50 % glycerol matrix. Recall, that glycerol may disrupt the weak base-carcinogen 

interactions of the (+)-2 type conformation, but in the case of strong carcinogen-base 

interactions the conformational equilibrium should be less sensitive to the presence of 

glycerol (34). This is demonstrated in Figure 4-6, where we compare the NLN and FLN 

fluorescence spectra of BPDE-guanine adducts at dG^ and dGs- As before, solid lines 

represent FLN spectra (Xg^ = 358.28 nm), while long- and short-dashed lines correspond 

to NLN fluorescence spectra obtained using 346 nm and 355 nm excitation, respectively. 

The conformational equilibrium of the adduct at dGi is almost entirely shifted to the 

external (+)-l type due to the addition of glycerol. The emission maximum has shifted 

blue and the excitation dependence has decreased considerably compared with the spectra 

in Fig. 4-5A). The adduct at dG3 (see Fig. 4-6B) appears to exist in a mixture of (-l-)-l 
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Figure 4-6. FLN and NLN spectra of double stranded d(CTATGiG2G3TATC) 
oligonucleotides in glycerol/aqueous buffer 50:50 matrix. Non-line narrowed 0-0 
origin bands were obtained for excitation wavelengths of 346 nm (long dashed line) and 
355 nm (short dashed line). Solid curves represent FLN spectra obtained at T = 4.2 K 
for Xgx = 358.28 nm. Frames A and B correspond to the i+)-trans-anti-BPDE adduct 
at dGi and dG3, respectively. 
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and (+)-3 conformations, preferentially excited at 346 and 355 nm, respectively. The 

long-dashed spectrum (A-exc ~ 346 nm) has undergone a strong blue shift compared to 

Fig. 4-5C, indicating a (+)-2 -> (+)-l transformation, but the relative contribution of 

die internal (+)-3 type conformation has remained significant in the 50% glycerol matrix, 

as shown by the short-dashed NLN spectrum and the FLN spectrum of Fig. 4-6B. 

Spectra obtained for the adduct at dG2 (not shown) were very similar to those of dG3; 

both adducts have a 5'-flanking guanine. These data are consistent with the spectra 

obtained in aqueous buffer, and demonstrate that also in double stranded oligonucleotides 

the conformational equilibrium of the (-l-)-fran5-a«n-BPDE-N2-dG adduct depends 

strongly on the nature of the 5' flanking base. If the 5' neighbor is thymine, the major 

adduct conformation is of the external type. If on the other hand the 5'-flanking base is 

guanine, the adduct conformation is not purely helix-external but exists in thermal 

equilibrium with a carcinogen-base stacked conformation. The latter is characterized by 

strong electron-phonon coupling and a 0-0 fluorescence origin band around 381 nm. 

These are novel findings, since, until now, strong base stacking interactions were thought 

to be primarily associated with cis adducts of (+)-flnft-BPDE to dC (19,20,35). At this 

point we do not know whether the base-stacked conformation of the {+)-trans-anti adduct 

at G1G2G3 and G2G3T is truly intercalated to the same extent as the above mentioned 

(+)-cis-anti BPDE adduct in double stranded d(...CGC...) • (...GCG...) (35). FLN ' 

spectra of the ds {+)-cis-anti BPDE-N^-dG adduct (M. Suh et al.; in preparation) showed 

stronger coupling and weaker zero-phonon lines than the i+)-trans adducts to dG2 and 

dG3, indicating that for the (+)-ds adduct the equilibrium is even more strongly 

dominated by the base-stacked (intercalated) conformation. 
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More on the 5'- and 3'-flanking base effects 

As a final illustration to show that the effect of the 5'-flanking base on the adduct 

conformation is not limited to one particular sequence, we can compare in Figure 4-7 the 

FLN spectra of the {+)-trans-anti-BPDE adducts in ds samples (Curve a: d(...G2G3T...) 

• d(...ACC...); curve b: d(...GiG2G3...) • d(...CCC...): curve c: d(...TGiG2...) • 

d(...CCA...)) with the FLN spectrum obtained for the same adduct (in a different 

sequence) with neighboring cytosines (curve d: d(...CGC...) • (...GCG...))- Spectra7a 

and 7b are nearly identical, and so are spectra 7c and 7d. It appears that in this case the 

influence of a 5'-flanking cytosine is not very different from that of a 50-flanking 

thymine. At this point we do not know whether this observation can be generalized. 

Unfortunately, due to the very low melting temperature of the d(CTATAGATATC) • 

d(GATATCTATAG) oligonucleotide available to us, the conformation of the 

{+)-trans-anti BPDE adduct at N^-dG with adenine on its 5'-side could not be studied in 

a well defined duplex structure. 

Finally, we would like to illustrate with Figure 4-8 die negligible influence of the 

3'-neighbor on the conformational equilibrium of the i+ytrans-anti BPDE N^-dG 

adduct. The FLN spectra 8a and 8b are nearly indistinguishable and reveal the broad 

emission around -381 nm indicating a (+)-3 type base-stacked adduct. Both adducts 

have the same 5'-neighbor (guanine), but different 3'-flanking bases (thymine in spectrum 

8a vs. guanine in spectrum 8b). Similarly, spectra 8c and 8d, obtained for two different 

oligonucleotides, both with thymine on the 5'-side of the lesion but with different 3'-

flanking bases, show very similar spectra indicative of a helix-external (+)-l 

conformation. These data confirm that die nature of the 3'-flanking base has little effect 

on the conformation of this adduct. It will be of interest to see whether or not the 

diastereomeric (-)-?mAw-flnri-BPDE-N2-dG adduct will show flanking base effects at its 
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Figure 4-7. FLN spectra of double stranded (+)-frfln5-fl«ri-BPDE modified 
oligonucleotides with the following sequences: curve a: d(...G2G3T...) • (...ACC...); 
curveb: d(...GiG2G3...) • (...CCC...); curvec: d(..,TGiG2...) • (...CCA,..); curved: 
d(...CGC...) • (...GCG...). Aqueous buffer matrix, T = 4.2 K, Xgx = 365.58 nm. 
Zero-phonon lines are labeled with their excited-state vibrational firequencies. 
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Figure 4-8. FLN spectra of double stranded i+)-trans-anti-BPDE modified 
oligonucleotides with the following sequences: curve a: d(...G2G3T...) • (...ACC...); 
curveb: d(...GiG2G3...) • (...CCC...); curvec: d(...TGiG2...) • (...CCA...); curved: 
d(...TGT.,.) • (...ACA...). Aqueous buffer matrix, T = 4.2 K, ^,5,^ = 356.78 nm. 
Zero-phonon lines are labeled with their excited-state vibrational frequencies. 
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3'-side, since this adduct has been shown to adopt a conformation in which the pyrenyl 

moiety is pointing towards the 3'-end of the adducted strand (24). 

Discussion 

As shown by Jankowiak et al (29) and Marsch et al. (28), low-temperature 

fluorescence techniques are particularly well suited to study adduct conformations, 

especially if the available amounts are limited. We have shown that not only may the 

presence of different adduct conformations be revealed, but also that different solvents 

(e.g., glycerol) may shift the equilibrium, providing more insight into the relative 

stability of conformations and into conformational heterogeneity. 

In this paper, the adduct conformations of (+)-fra/w-a/irf-BPDE-N2-dG in 

different sequence defined oligonucleotides were investigated using FLN and NLN 

fluorescence spectroscopy. The GGG sequence was selected because runs of guanines 

appear to be frequently mutated (36,37). The results indicate that tiie adduct can adopt at 

least three different conformations both in ss and in ds oligonucleotides. This is in 

agreement with our previous studies of (±)-flnft-BPDE adducts in DNA and in different 

oligonucleotides (20,29). The adduct conformation is strongly influenced by the 

sequence context. For the {+)-trans-anti-h?TyE adduct, depending on the 5'-flanking 

base, the major adduct conformation formed in single stranded DNA is either primarily 

(-i-)ls external for TG, or a mixture of external and (+)3s base stacked conformations for 

GG (and AG). Similar flanking base effects were observed in double stranded 

oligonucleotides. 

Most adduct conformations discussed in diis paper are very heterogeneous. At 

room temperature they will be in dynamic thermal equilibrium, which may be either fast 

or slow. If the ±ermal equilibrium is fast, as is the case for the {+)-trans-anti-^?TyE 
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adduct in die d(...CGC...) • d(...GCG...) duplex, room temperature ^H-NMR studies 

will reveal only an average structure (22). In contrast, two conformations could be 

observed for the same adduct in the same oligonucleotide when using low-temperature 

fluorescence spectroscopy (M. Suh et al.; in preparation). Note that the observation of 

two or more distinct conformations after cooling to cryogenic temperatures must indicate 

that these conformations are part of the room-temperature distribution. The 

conformational equilibrium trapped at low temperature must reflect the major (but not 

necessarily all) of the conformations that are relevant (thermally accessible) in solution 

(30). Thus, selective (laser-based) low temperature fluorescence spectroscopy can be 

very helpful in characterizing adduct conformations which do exist at ambient 

temperatures, but cannot be readily observed in solution due to various broadening and/or 

quenching phenomena. In this respect it is important to note tiiat at low temperature 

external and intercalated BPDE-N^-dG adducts have similar fluorescence quantum yields, 

while at room temperature the intercalated adducts may easily escape detection as the 

result of more efficient quenching (3,19). 

The sequence specificity of mutations is in principle attributed to the sequence 

specific binding, DNA repair and mutagenic translesional synthesis during DNA 

replication. High mutational frequency by (±)-flnft'-BPDE observed in runs of guanine 

sequence (36,37) is in agreement with high binding preference of BPDE to guanine bases 

which have flanking guanines(38,39). However, some discrepancies were also reported. 

Mazur showed (36) that no mutation occured at some runs of guanines in aprt gene 

treated with (±)-a7zrf-BPDE despite the high binding preference at those sites(38). Also 

prevalent mutations were observed at runs of guanines flanked by adenines 

notwithstanding the fact that these sites are less prefered binding sites(38,39). Therefore, 

it is believed that the sequence specificity of the BPDE-indiced mutation depends also on 
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the biological processing of the lesion site which in turn affected by the conformation of 

the bound BPDE. 

Multiple conformations for a single adduct were also proposed by Loechler and 

coworkers (40,41), who showed that heating (at 80° C for 10 min) of the {+)-anti-

BPDE-adducted plasmid PUB3 prior to transformation resulted in different mutations at 

the particular guanines compared to the unheated control. Our data support their 

findings, since they indicate that a mixture of adduct conformations can exist. Heating 

could cause a redistribution of the conformational equilibrium if the energy barriers are 

relatively high. Also strong sequence-dependent polymorphism in adduct-induced DNA 

structure with N-2-acetylaminofluorene residue bound to C8-G of the DNA has been 

reported(42,43). Authors have proposed that the polymorphism plays a major role in the 

sequence specific responses observed when these regions are processed in vivo. This 

aspect of adduct heterogeneity deserves further study. 

At this point we would like to mention that Rodriguez and Loechler (26) found 

that (+)-cna'-BPDE induced many mutations, in particular frame-shifts, in sequences 

with runs of guanines. Thus, tentatively, as a working hypothesis, we suggest that this 

type of mutation could be induced by carcinogen-base stacked conformations. It was also 

demonstrated (26) that the specificity of mutagenic activity at a particular guanine residue 

can be influenced by the base on its immediate 5C-side; in TG sequences mutations were 

almost exclusively restricted to G->T. This could be related to the predominantly helix-

external adduct conformation. Also relevant are our recently obtained (unpublished) 

results on DNA adducts from mouse skin treated with benzo[fl]pyrene, in which 

{•¥)-trans-anti-B?DE seemed to exist as a mixture of external and internal conformations. 

We believe that identification of sequence-dependent adduct conformation(s) and study of 

their repair efficiency in relation to the DNA conformation (i.e., external vs. internal vs. 
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apurinic site) will be essential to a better understanding of mutagenesis and/or 

carcinogenesis. 
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CHAPTER 5. FORMATION AND PERSISTENCE OF BENZO[a]PYRENE-DNA 

ADDUCTS IS MOUSE EPIDERMIS IN VIVO : IMPORTANCE OF ADDUCT 

CONFORMATION 

A paper published in Carcinogenesis, 16, 2561-2569 (1995) 

M. Suh, F. Ariese, G. J. Small and R. Jankowiak 

A. Hewer and D. H. Phillips 

ABSTRACT 

The formation and repair of benzo[a]pyrene diol epoxide-NMeoxyguanosine 

adducts (BPDE-N2-dG) in DNA isolated from the skin of mice treated topically with 

benzo[a]pyrene (BP) was studied by ^zp-postlabeling and by low-temperature 

fluorescence spectroscopy under low resolution and under high resolution fluorescence 

line narrowing (FLN) conditions. In agreement with earlier studies, total BP-DNA 

binding reached a maximum at 24 hours after treatment (dose: l|Amol/mouse), then 

declined rapidly until 4 days after treatment and much more slowly thereafter. An HPLC 

method was developed which resolved the 32P-postlabeled {-)-trans- from {-)-cis-anti-

BPDE-N^-dG, and (+)-?/'an5-from (-f-)-cw-a«rf-BPDE-N2-dG. HPLC analysis of the 

major TLC adduct spot (containing >80% of the total adducts) obtained by postlabeling 

BP-modified mouse skin DNA showed that it consisted of a major component that 

coeluted with (-)-cw-/(+)-?rfln5-anft'-BPDE-N2-dG, and a minor component that coeluted 

with (-)-fran5-/(4-)-cw-a«rf-BPDE-N2-dG, and that the minor component was repaired at 
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a slower rate than the major component. Low-temperature fluorescence spectroscopy of 

the intact DNA identified the major adduct as (+)-?rfl/w-a7m'-BPDE-N2-dG, and the 

minor adduct fraction consisted mainly of (+)-cw-flna-BPDE-N2-dG. In agreement with 

the ^^p-postiabeling results it was observed by fluorescence spectroscopy that the (+)-m-

adducts were repaired more slowly than most other adducts. Moreover, die {+)-trans-

adducts exhibited a broad distribution of base-stacked, partially base-stacked, and helix-

external conformations. Mouse skin DNA samples obtained at early timepoints (2 to 8 

hrs) after treatment with BP contained substantially more of the 'external' adducts, while 

samples at later timepoints (24 to 48 hrs) contained relatively more adducts in the base-

stacked conformation, indicating also that the latter adducts are repaired less readily than 

the former. The possible biological significance of these novel observations of 

conformation-dependent rates of DNA adduct repair, and tiieir possible dependence on 

DNA sequence, are discussed. 

INTRODUCTION 

Benzo[a]pyrene (BP) is a potent environmental carcinogen. In biological systems, 

it can be activated enzymatically to the electrophilic metabolite 7,8-dihydroxy-9,10-

epoxy-7,8,9,10-tetrahydrobenzo[fl]pyrene (BPDE) (1,2). The enzymatic transformation 

of BP to BPDE results in many stereoisomeric BPDEs, of which (-l-)-c«ft-BPDE ((+)-7p 

,8a-dihydroxy-9a,10a-epoxy-7,8,9,10-tetrahydrobenzo[fl]pyrene) is known to be the 

most mutagenic and tumorigenic in mammalian cells (3-5). a/in'-BPDE forms adducts 

primarily with the N^ -exocyclic amino group of guanine moieties in DNA via either 

trans or cis opening of the BPDE epoxide ring (6,7). The covalent binding of BPDE to 

cellular DNA is believed to be an early event in BP carcinogenesis (8,9). 
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In order to understand the role of BPDE adduct structures in carcinogenesis, many 

studies have been carried out with stereochemicaily pure anti-B?DE adducts. Recently, 

the conformational structures of stereochemicaily well defined a/in'-BPDE adducts 

contained in oligonucleotides were characterized by high resolution NMR spectroscopy 

(10-13), by low-temperature fluorescence spectroscopy (14), optical spectroscopy and 

thermal stability (15) and fluorescence life time measurements (16). It is conceivable that 

the conformation of BPDE-DNA adducts is important in determining the biological 

consequences of BPDE binding to DNA including mutagenesis, and in determining the 

reparability of BPDE lesions. Different inhibitory effects on DNA and RNA polymerase 

activities were reported depending on the stereochemical properties of enantiomeric 

fl/irf-BPDE adducts in vitro (17-19). Recently, Loechler et al. reported that BPDE adduct 

conformation is a key factor controlling the types of mutation at the lesion site (20). 

Moreover, BPDE adducts with a given stereochemistry can adopt various conformations 

depending on the base sequence at the lesion site (14), which in turn results in sequence-

specific mutations (21). However, despite the numerous studies on BP or BPDE binding 

and removal in mouse skin, cells and organ cultures (22-25), there have been no reports 

characterizing the conformations of DNA adducts formed in vivo as a function of the time 

passed since exposure. 

Conventional (26) and laser induced fluorescence (LIF) spectroscopy (27) at 

cryogenic temperatures can be used for the analysis of DNA damage by PAHs in vitro 

and in vivo. For BPDE adducts, the present limit of detection of its pyrene chromophore 

by fluorescence line-narrowing (FLN) is < 1 adducted base pair per 10® base pairs in 100 

|ig of DNA. For example, FLN spectral analysis of human hemoglobin was used to 

determine the structure of the major human globin adduct formed in vivo from BP (27). 

FLN spectroscopy can be used to assign adduct stereochemistry and/or adduct 
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conformation (28), for instance as a function of base sequence (21). We have 

demonstrated using line-narrowing (S,4-So laser excitation at 4.2 K) and non-Iine-

narrowing conditions (NLN; S2 <- Sq laser excitation at 77 K) that (±)-a«ri-BPDE adducts 

can exist in helix-external, partially base-stacked, or base-stacked (intercalated) 

conformations (28). Based on the extent of the red shift observed for the origin band of 

the pyrenyl fluorescence spectrum, these three conformations are denoted as (±)-l, (±)-2 

and (±)-3, respectively, where the sign indicates whether the adduct is derived firom (-1-)-

or from (-)-flnrf-BPDE (28). 

In this paper, we present data on the formation and repair of stable BPDE-N^-dG 

adducts in DNA in mouse skin, following topical treatment with BP using ^^P-

postlabeling, HPLC, and laser induced fluorescence techniques. We have found that the 

rates of repair are different for helix-external and internal adducts. To the best of our 

knowledge this is the first report indicating that the rate of BPDE-DNA adduct repair 

may be conformation dependent. 

MATERIALS AND METHODS 

Chemicals 

Benzo[fl]pyrene (purity >99 %) was purchased from the Community Bureau of 

Reference (Brussels, Belgium). Polyetiiyleneimine-cellulose (PEI-cellulose) TLC sheets 

were manufactured by Macherey-Nagel and supplied by Camlab (Cambridge, U.K.). 

HPLC grade methanol was purchased from BDH Ltd. ( Poole, Dorset, U.K.), and 

Zorbax phenyl-modified reversed- phase columns were obtained from Hichrom ( 

Reading, U.K.). Samples were filtered prior to HPLC separation using 0.45 |j,m filters 
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obtained from Millipore-Waters, Milford, MA. BPDE-N^-dG standards were obtained by 

digesting stereochemically pure BPDE-modified oligonucleotides, generously provided by 

Dr. N. E. Geacintov (New York University, Department of Chemistry). Details of the 

synthesis of (±)-c«rf-BPDE-modified oligonucleotides using a direct approach (29) are 

given in reference (30). 

Topical Treatment of Mice 

Groups of 4 male Parkes mice (6-8 weeks old) purchased from the MRC National 

Institute for Medical Research (Mill Hill, London, U.K.) were treated with BP; 1 ^imol 

in 150 nl acetone per mouse was applied to shaved areas of their backs. Control animals 

received acetone only. Groups of four animals were killed by cervical dislocation at 

different timepoints after treatment (1 hr-7 days). Treated areas of the skin were 

removed and frozen. 

DNA Isolation 

The dermal surface of the frozen skin was removed by scraping with a scalpel 

blade and die remaining frozen epidermal layer was powdered in liquid Nj (31). The 

powdered samples were then thawed in 10 mM EDTA, and after homogenization a 10 % 

solution of SDS (0.1 vol) was added. The DNA was isolated and purified using a 

previously described phenol/chloroform extraction method (32). 

^^P-Postlabeiing 

The general procedure of Randerath and co-workers was used (33,34). DNA 

digestion and postlabeling using nuclease PI digestion to enhance the sensitivity of the 
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assay was carried out essentially as described by Hughes and Phillips (35); 50 |aCi [y-

^^P]ATP purchased from ICN was used in each labeling reaction. 

Thin-Layer Chromatography 

In order to resolve the ^^P-labeled adducts in digests of DNA from BP-treated 

mouse skin, a previously described solvent system (36,37) was used with either 10 x 10 

or 20 X 20 cm PEI-cellulose TLC plates. Plates were eluted with: Dl, 1.0 M sodium 

phosphate, pH 6.0; D2, 5.3 M lithium formate, 8.5 M urea, pH 3.5; D3, 1.2 M lithium 

chloride, 0.5 M Tris-HCl, 8.5 M urea, pH 8.0; D4, 1.7 M sodium phosphate, pH 6.0. 

For resolution of cis and trans adducts of the cnrf-BPDE isomers, the 

chromatography system described by Canella et al. (38) was used. ^^P-Postlabeled 

adducts were resolved on 20 x 20 cm PEI-cellulose plates eluted with: Dl, 1.0 M sodium 

phosphate, pH 6.0; D2, 3.6 M lithium formate, 7.5 M urea, pH 3.4, for 20 h on to a 

paper wick; D3, 0.8 M sodium phosphate, 0.5 M Tris-HCl, 7.5 M urea, pH 8.2, also for 

20 hr on to a paper wick. 

High-Performance Liquid Chromatography (HPLC) 

Radioactive spots of B[a]P-DNA adducts were eluted from PEI-cellulose by 

overnight extraction with 400 nl of 4.0 M pyridinium formate (pH 4.5). Eluates were 

filtered and then reduced to dryness in a Savant Speed Vac concentrator. Recovery was 

greater than 90 %. Adduct residues were redissolved in methanol. 

HPLC separation of ^^P-postlabeled adducts was carried out on a phenyl-modified 

reversed phase column as described previously (39). Gradients were made using the 

following solvents: A, 0.3 M sodium dihydrogen orthophosphate and 0.2 M 

orthophosphoric acid, mixed in proportions to provide a buffer at pH 2.0; B, 
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methanohbuffer A, 9:1. The gradient program was: 0-12.5 min, a linear gradient of 10-

43 % B; 12.5-60 min, a linear gradient of 43-47 % B; 60-80 min, a linear gradient of 47-

90 % B; at a flow rate of 1.2 ml/min. 

Lov^-Temperature Fluorescence Spectroscopy 

A detailed description of the apparatus used for FLN and NLN fluorescence 

spectroscopy is given elsewhere (27). Briefly, the excitation source was a Lambda Physik 

FL-2002 dye laser pumped by a Lambda Physik EMG 102 MSC XeCl excimer laser. The 

cryostat was of the double-nested glass type fitted with quartz optical windows. For 

gated detection the output of a reference photodiode triggering an FG-100 high voltage 

gate pulse generator was used to define the temporal observation window of a Princeton 

Instruments IRY 1024/G/B intensified blue-enhanced photodiode array. The detector 

delay time was set to 45 ns; the gate width was 400 ns. A 1-m focal length McPherson 

2016 monochromator was used to disperse the fluorescence. For high-resolution 

measurements the monochromator was equipped with a 2400 grooves/mm grating, 

providing an 8 nm spectral window with a resolution of ~ 0.08 nm. Low-resolution 

NLN fluorescence bands were recorded using the same monochromator fitted with a 150 

grooves/mm grating yielding a 150 nm window. NLN spectra were obtained using 

different excitation wavelengths in order to selectively excite helix-external versus base-

stacked adducts as described by Geacintov et al. (26,28,30). FLN specora were obtained 

using many different excitation wavelengths, each revealing a portion of the Sj excited-

state vibrational frequencies. 

DNA isolated from mouse skin treated with BP was precipitated with 0.1 volume 

of 5 M NaCl and 2 volumes of ethanol precooled to -20 °C. The DNA precipitate 

containing various amount of adducts was dissolved in 30-40 ^il of 20 mM sodium 
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phosphate buffer (pH 7.0; 100 mM NaCl), and the resulting solution (DNA concentration 

was ~3mM in base pairs) was transferred to quartz glass tubes (3 mm o.d. x 2 mm i.d. 

X 1 cm) for spectroscopic analysis at 77 and 4.2 K. In order to determine the DNA 

concentration of the samples, aliquots of the DNA solutions were diluted and the 

absorbances at 258 nm were measured using a Hewlett Packard 8452A UV-Vis 

Spectrometer. Ethanol-precipitated solid pellets of mouse skin DNA were also analyzed 

for comparison. Synthesized oligonucleotide-BPDE adduct standards were dissolved in 

30 ^il of 20 mM sodium phosphate, 100 mM NaCI, pH 7.0 buffer. Samples were kept on 

ice for at least 20 minutes before rapid cooling in liquid helium (for FLN) or liquid 

nitrogen (for NLN fluorescence spectroscopy). 

RESULTS 

BP-DNA Adducts on PEI-Cellulose TLC 

^^P-postlabeling analysis of mouse skin DNA from animals treated topically with 

BP revealed the expected pattern of BP-DNA adducts on 10 x 10 cm TLC plates at all 

time-points. This consisted of a major spot, possibly containing more than one 

compound, and a series of minor spots (data not shown). Adduct resolution was 

improved further for the 4-h, 6-h, 8-h and 24-h timepoint samples by chromatography of 

their postlabeled digests on 20 x 20 cm TLC plates, and an example of the profile 

obtained with the 8-h sample is shown in Figure 5-1. Most of the radioactivity was 

contained in a major, possibly composite spot (spot 4/5), in addition to which there were 

a further six minor spots detected: spots 1-3 and 6-8. The relative amounts of 

radioactivity in each adduct spot is shown for the 4-h, 6-h, 8-h and 24-h samples in Table 



www.manaraa.com

123 

Figure 5-1. Autoradiogram of the PEI-cellulose TLC map (20 x 20 cm) of the ^^P-
postlabeled digest of DNA isolated from mouse skin 8h after treated with BP (1 urnol). 
Solvents for chromatography were as described in the text. The origin is located at the 
bottom left-hand corner. Adduct spot 4 & 5 was excised, eluted and further analyzed by 
HPLC. 
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5-1. The major adduct spot (4/5), assumed to be due to the reaction of (+)-flnft'-BPDE 

with the N2 position of guanine residues in DNA (33), accounts for >80 % of the total 

binding detected. The minor adduct spots observed probably result from the reaction of 

benzo[a]pyrene diol-epoxide isomers with adenine residues in DNA, and from the 

reaction of other reactive intermediates with DNA (40). 

Using the TLC conditions described by Canella et al. (38), the four 

stereochemically distinct cnft'-BPDE-dG adducts (i.e., {+)-trans-, (r)-trans-, (+)-cw- and 

{-)-cis-) derived from aKft'-BPDE-modified duplexes 5'-d(CCATCGCTACC)-

(GGTAGCGATGG), modified by trans or cis addition of the exocyclic amino group of G 

to the CIO position of either (+)- or (-)-fl«ft-BPDE, were also analyzed by ^^P-

postlabeling. In agreement with previous reports (38), our results indicated that the cis 

and trans adducts of both the (+)- and (-) isomers could be resolved from each other on 

TLC (data not shown). However, the {-)-cis adduct comigrated with the {+)-trans 

adduct; and the (-)-trans adduct comigrated with the (+)-cw adduct. 

For subsequent HPLC analysis of these adducts, the TLC spots were excised and 

the radioactive material was eluted to provide material for injection onto HPLC. 

HPLC of Adduct Standards 

The ^^P-postlabeled trans- and cis- adducts of (-)-fl«ft-BPDE with guanine 

residues were well resolved on HPLC, eluting around 29 and 36 minutes, respectively 

(Figure5-2A). The trans- and cis- adducts of (+) anft-BFDE to guanine were also well 

resolved from each other (Figure 5-2B), with elution times of around 36 and 29 minutes, 

respectively. A UV marker compound, 9,10-dihydro-9,10-dihydroxyphenanthrene, eluted 

at - 46 minutes. These results indicate that the cis adduct of (+)-a«ft-BPDE had a 

retention time very similar to that of the trans adduct of (-)-fl«ft'-BPDE, and the trans 
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Table 5-1. Quantitation of adduct spots in mouse skin DNA obtained 4,6,8, and 24 hours 
after topical application of BP 

Spot number % of total radioactivity 

4h 6h 8h 24 h 

1 1.3 0.9 0.9 0.8 

2 8.3 9.5 12.2 10.0 

3 2.1 0.8 0.8 2.6 

4 & 5  81.2 82.9 81.0 82.0 

6 5.7 4.4 3.8 3.4 

7 1.3 0.5 0.5 0.4 

8 0.0 1.0 0.8 0.8 
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adduct of (+)-flnrz-BPDE had a retention time very similar to that of the cis adduct of (-)-

anti-BPDE. Indeed, in co-injection experiments, it was not possible to separate these 

adduct pairs adequately (data not shown). 

HPLC of the Major BP-DNA Adduct Spot 

HPLC profiles of the adducts extracted firom TLC spot 4&5 (see Figure 5-1) were 

obtained for each time point. Figure 5-2C shows the result obtained with the sample 

collected at 4 hr after treatment. A major peak at ~ 36 minutes and a minor peak at ~ 29 

minutes were found. The retention time of the major peak corresponds to that of the 

trans adduct of (+)-anft'-BPDE (but also that of the cis adduct of (-)-anft'-BPDE) and the 

retention time of the minor peak corresponds to that of the cis adduct of (-l-)-fl«n-BPDE 

(but also the tra?is adduct of (-)-a«rz-BPDE). However, fluorescence line narrowing data 

(see below) indicate that the major BP-DNA adduct is i+)-tra?ts-anti-BPDE and not (-)-

cis-ami-BPDE, in agreement with previously reported findings (41). Similarly, the 

minor HPLC peak is believed to contain primarily the (-l-)-cw-c«ft'-BPDE adduct (see the 

following section on FLNS). 

The relative amounts of trans- and cis- guanine adducts of (+)-anft'-BPDE found 

in mouse skin DNA at different times after treatment with BP are depicted in Figure 5-

3B. These two curves are contrasted with the total BP binding to DNA as shown in 

Figure 5-3A. Since the (-l-)-/rfl«s-flnft'-BPDE-dG is the major adduct found with 

postlabeling (about 70-75 % of the total adduct level), it is not surprising that the time 

profiles of the {+)-trans-anti-B?DE adduct (curve a of firame B) and that of the total BP 

adduct level (frame A) are nearly indistinguishable. These data, in agreement with our 

earlier works (37), show that the {+)-trans-anti-BPDE adduct (-13 fmol/ng of DNA) 

was at its highest level at 24 hours and had declined significantly by 48 hours. In 
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Figure 5-2. HPLC of ^^p-postlabeled trans- and cis-anti-BFDE adducts obtained fi-om 
stereochemically pure BPDE modified oligonucleotides (firames A and B) and from mouse 
skin DNA at 4 hours after BP treatment in vivo (frame C). The HPLC peaks with elution 
times at around 29 and 37 minutes correspond to {-)-trans-l(+)-cis- and {-)-cis-/{+)-
fra/w-adducts, respectively. The peak around 46 minutes corresponds to the UV marker 
(see text for explanation). 
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Figure 5-3. Formation and removal of BP-DNA adducts in mouse skin as a function of 
time after BP application. (A) Total BP binding to DNA, as determined from TLC maps, 
in fmol adducts/^g of DNA (B) Relative intensity of radioactivity (in cpm) of (+)-trans-
(solid line, left-hand axis) and (-l-)-cw-cnft'-BPDE-N2-dG adducts (dashed line, right-hand 
axis), obtained after HPLC separation of the major adduct spot. 
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contrast, the level of the i+)-cis-anti-BPDE adduct at 48 hours was as high as that 

observed at 24 hours. 

Low-Temperature Fluorescence Spectroscopy Studies 

The stereochemical characteristics of the BPDE adducts were determined by 

fluorescence line narrowing spectroscopy (FLNS). This technique is used to obtain high-

resolution, vibrationally resolved fluorescence spectra from samples cooled to 4.2 K (28). 

It has been established (14,42) that when a tunable dye laser is used to probe the 

vibrational frequencies of the first electronically excited state Sj, the 579 cm*' mode is 

very strong for (±)- trans-anti-BPDE adducts to N^-dG, while the 612 cm-^ mode is rather 

weak. For cis addition products of the exocyclic amino group of guanine moieties to (±)-

anti-BPDE, those two modes exhibit comparable intensities and the 740 cm-^ mode 

becomes readily noticeable. This is illustrated in Figure 5-4 presenting the FLN spectra 

of the (+)-trans- and the (-f)-cw-c«rf-BPDE-N2-dG adduct contained in the 

oligonucleotide d(CCATCGCTACC) • (CCATCGCTACC) (curve b and c, respectively). 

The FLN spectrum of the mouse skin DNA sample obtained 24 hours after topical 

application (curve a) is almost identical to that of the (+)-trans-anti-BPDE adduct to the 

oligonucleotide (curve b) but very different from that of the (-l-)-d5-fln/z-BPDE adduct 

bound to the same oligonucleotide (curve c). Spectrum a shows the very strong 579 cm-^ 

mode that is characteristic of trans-anti-BPDE adducts. Also a minor contribution of a 

cis addition product in mouse skin DNA can be noticed by the presence of a weak 740 

cm-i mode (indicated by the asterisk). All other mouse skin DNA samples from different 

timepoints showed very similar spectra indicating that the trans adduct is the major 

adduct throughout the whole time course (data not shown). Therefore, the major adduct 

separated by HPLC (Figure 5-2, frame C) can be safely assigned as (+)-trans-anti-
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Figure 5-4. Fluorescence line narrowing spectra of BPDE-DNA adducts, = 369.48 
nm; T = 4.2 K. Curve a; ethanol precipitated solid DNA from mouse skin obtained 24 
hours after BP treatment; curve b: (+)-rrfl7W-c«/z-BPDE-N2-dG adduct to double stranded 
d(CCATCGCTACC) • d(GGTAGCGATGG) oligonucleotide, dissolved in 20 mM sodium 
phosphate, 100 mM NaCl, pH 7,0 buffer; curve c: i+)-cis-anti-B?DE-N^-dG adduct to 
the same double-stranded oligonucleotide in the same buffer matrix. The underlines are 
used to indicate the residues modified by BPDE. Vibrational modes are labeled with their 
excited state vibrational frequencies in cm-i. An asterisk is used to label the mode which 
is typical for the cw-adduct. 
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BPDE-N^-dG and not as a (-)-cw adduct. The absence of the 557 cm-^ and 616 cm-' 

modes indicates that there is no significant contribution from syn adducts (43). 

Low-resolution fluorescence emission spectra of adducted mouse skin DNA 

samples in aqueous buffer solution at 77K revealed that the conformational distribution of 

the adducts changes throughout the time course. The fluorescence origin bands of the 

adducted mouse skin DNA showed a gradual red shift up to 24 hours after the application 

of BP and then shifted blue for later timepoints (see Figure 5-5, curves a,b of frame A 

and curve a of frame B, non-selectively excited at 350 nm). The same trend was 

observed for solid pellet samples of ethanol precipitated mouse skin DNA (data not 

shown). The maximum red shift was observed at 1 day after the application of BP, 

independent of the excitation wavelength except when a wavelength selective to 

intercalated conformations was used, i.e., 355 nm. The red shift can be explained 

generally by increased contributions from (+)-2 and (+)-3 adduct conformations, i.e. 

adducts witii partially base-stacked or base-stacked (intercalated) conformations, 

respectively. We have already reported (21) that the conformational distributions of (-!-)-

fra/w-fl/irf-BPDE-N^-dG adducts to double stranded oligonucleotides depend on the 

neighboring base sequences. The origin band of the mouse skin DNA samples is broader 

and strongly red-shifted compared to all (-}-)-fra«5-ann'-BPDE-N2-dG adducts studied so 

far in calf thymus DNA and in various double stranded oligonucleotides in vitro 

(14,21,42) (see discussion below). This indicates that in mouse skin DNA there is a 

broad, heterogeneous distribution of adduct conformations, of which a large fraction 

shows considerable base-stacking. Since about 75 % of the total adduct population has the 

same stereochemistry, we suggest that the conformational heterogeneity is related to the 

various base sequences around the lesion sites. 
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Figure 5-5. NLN fluorescence origin bands of BPDE-DNA adducts from mouse skin. 
Frame A shows a shift in the conformational distribution in time: curves a and b correspond 
to mouse skin DNA obtained at 4 hours and 24 hours, respectively. = 350. Frame B 
illustrates adduct heterogeneity: curve a and b correspond to the 4 day sample, excited at 
350 nm and 355 nm, respectively. Curve c is the difference spectrum (curve a minus curve 
b), showing the minor adduct fraction with helbc-external character. Solvent matrix: 20 
mM sodium phosphate buffer (pH 7.0) with 100 mM NaCl; T = 77 K. 
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Adduct heterogeneity is further illustrated in Figure 5-5B, presenting the NLN 

fluorescence spectra of the 4-day sample using non-selective excitation at 350 nm (curve 

a) and more selective excitation at 355 nm (curve b). As shown by Geacintov et al. (30), 

355 nm radiation preferentially excites intercalative BPDE adducts. However, the 

emission maximum and width of curve b do not agree completely with the emission band 

measured for the intercalated (+)-cw-flnri-BPDE-N2-dG adduct in duplex oligonucleotides 

(14). We conclude that the adduct population excited at 355 nm contains not only truly 

intercalated adducts, but also adducts experiencing weaker stacking interactions ((+)-2 

type conformation). The difference spectrum (curve a minus curve b = curve c) shows 

the existence of a smaller adduct firaction with a helix-external character and an emission 

maximum at 378.5 nm. At this point it should be mentioned that at cryogenic 

temperatures all BPDE adducts show very similar fluorescence lifetimes and must 

therefore have comparable fluorescence quantum yields. Thus, the relative fluorescence 

intensities of the various adduct types provide a direct indication of their contribution to 

the total adduct population if non-selective excitation is used. 

In order to investigate the formation and removal of BPDE lesions in mouse skin 

DNA, the broad fluorescence emission band was integrated over the 370-500 nm range; 

the resulting total fluorescence intensity was normalized by the absorbance of the 

corresponding DNA solution at 258 nm. When non-selective excitation is utilized, the 

integrated fluorescence intensity reflects the total BPDE level bound to the DNA. As 

illustrated in Figure 5-6A, at most time points the fluorescence intensity profile (shown as 

circles) of mouse skin DNA excited at 350 nm is very similar to the total BP profile 

obtained by postlabeling (compare with Figure 5-3A). For the 4-day and 7-day samples, 

however, the fluorescence intensity profile reveals higher adduct levels than the ones 

obtained via the ^zp postlabeling method. The total adduct level obtained by fluorescence 
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Figure 5-6. Fluorescence intensity profiles of mouse skin DNA after topical application 
of BP. Epidermal DNA from each timepoint was dissolved in 20 mM sodium phosphate 
buffer (pH 7.0; 100 mM NaCl). NLN fluorescence spectra at 77 K were integrated over 
the 370 nm - 500 nm range and normalized by DNA concentrations. Frames A and B 
show the intensities obtained at ^ex = 350 and 355 nm, respectively. Experimental data 
are shown as circles; error bars represent the standard deviations from three different 
measurements. Line curves are best fits obtained with the following parameters: Frame 
A, dashed line (fast component): Xf = 18 hrs, = 19 hrs, CT = 7 hrs; dashed/dotted line 
(slow component): if == 18 hrs, = 100 hrs, a = 20 hrs; the solid line is the sum of 
the two component curves. Frame B: = 18 hrs, = 57 hrs, CT = 10 hrs. 
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spectrometry reaches the maximum at 24 hour after BP treatment. Moreover, when 

selective excitation at 355 nm is employed, the fluorescence intensity profile as a function 

of time reflects the formation and removal of BPDE adducts adopting base-stacked and/or 

intercalated conformations (see Figure 5-6B). Interestingly, the overall profile is similar 

to that of the (-F)-cw-fl/in"-BPDE-N2-dG adduct as measured by HPLC, except for the 4-

day and 7-day samples (see Figure 5-3B). The similarity can be explained by the fact 

that the (+)-cw-<3«ft"-BPDE-N2-dG adduct has been shown to adopt primarily an 

intercalated conformation in double-stranded oligonucleotides (12,14,30). The 

intercalated conformation reaches the maximum level at 48 hour after BP application and 

the overall profile is broader than the total BP level profile shown in Figure 5-3A. FLN 

spectra, obtained with excitation wavelength 356.78 nm, confirm the intercalated 

character of these adducts. Figure 5-7 shows that the intensity of the broad emission 

intercalated BPDE adducts (14), varies depending on the time passed after BP treatment, 

and follows the time profile obtained by NLN fluorescence spectrometry at 355 nm 

(Figure 5-3B). 

Analysis of Formation and Repair Kinetics 

In an attempt to obtain more insight into the observed time profiles in terms of 

apparent rates of formation and removal, we tried to fit the experimentally obtained 

fluorimetric data assuming, for simplicity, single exponential kinetics for adduct 

formation and repair. It is straightforward to show that the time course of adduct 

formation/repair can be described as: 

A(t) = Ao—p [ exp(-kft) - exp(-krt)] 
K f - K r  

(1) 
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Figure 5-7. FLN spectra of mouse skin DNA obtained at different time points after BP 
application. Curve a: 4 hrs; curve b: 6 hrs; curve c: 8 hrs; curve d: 24 hrs; curve e: 48 
hrs; curve f: 196 hrs. Ethanol-precipitated solid DNA was used to obtain a better signal-
to-noise ratio. Base-lines are marked as dotted lines at the left edge of the curves; 
intensities are normalized to the 1561 cm*' mode. Vibrational modes are labeled with 
their excited states vibrational frequencies in cm-i. = 356.78 nm; T = 4.2 K. 
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where kf = In2/Tf and = In2/Tj, and being the half lives of adduct formation and 

repair, respectively. A(t) is the time-dependent adduct concentration; is a constant. 

In order to take into consideration the adduct heterogeneity of the sample, due to 

the various base sequences and the inhomogeneous character of the DNA environment, 

we assume die repair to have a Gaussian distribution of half-life values with variance 

. We average A(t) of Eq. 1 over the distribution fCAx^) of repair half-lives: Ax = -

Xfo, where x^ is the mean value for the repair half-life. Thus, 

Eq. 2 may be solved yielding the concentration of adducts being formed and repaired via 

nonconstrained first-order reactions. Normalized fits to the experimental results are 

presented as line curves in Figure 5-6. As shown in Figure 6-6B the time profile of the 

intercalated adducts can be fitted reasonably well when substituting an apparent half-life 

of formation of 18 hrs, a half-life of removal of 57 hrs, and a relatively small value for a 

, set to 10 hrs. The experimental data do not indicate a very broad distribution of repair 

rates. In the case of the total adduct levels, however, the time profile cannot be fitted 

very well with single exponential kinetics, not even when a very large CT value is 

assumed. The experimental data clearly indicate a rapid initial phase, followed by a much 

slower removal of the remaining (minor) fraction, which we attempted to fit assuming a 

bimodal repair rate distribution, as shown in Figure 5-6A: dashed line (fast component): 

Xf = 18 hrs, Xfj, = 19 hrs, a = 7 hrs; dashed/dotted line (slow component): Xf = 18 hrs, 

Xfo = 100 hrs, a = 20 hrs; the solid line is the sum of the two component curves. We 

conclude that the major adduct fraction is relatively quickly repaired, which might be due 

to the fact that (+)-trans-anti-BPDE adducts (the major contribution to the total adduct 

population) tend to disturb the overall helical structure (bending (44) and /or unwinding 

(2) 
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(45)) and are therefore presumably more easily recognized by cellular repair mechanisms. 

The time profile is very similar to that found for the (+)-frfl/w-c«ft'-BPDE-N2-dG adduct 

measured by HPLC (solid line in Fig. 5-3B). The remaining minor fraction that is less 

easily repaired is of course partly due to the intercalated species of time profile 6B. 

However, since the total adduct profile represents a very heterogeneous mixture, also 

other adduct species with a more external, partially base-stacked character (less efficiently 

excited at 355 nm) could be difficult to recognize and/or repair. Finally, a leveling off of 

the repair rate could also be due to a decrease in enzyme activity after the initial 

(induced) active phase. At this point it is not clear as to what extent this effect plays a 

significant role in the overall kinetics. We did not attempt to correct for the contribution 

from cell turnover to the adduct removal process because mouse epidermis cell turnover, 

even though it is faster than for other tissues (i.e. heart, lung), is much slower than active 

enzymatic repair (22). 

DISCUSSION 

In this paper the BPDE-DNA adducts formed in mouse skin were assessed by ^^P-

postlabeling, HPLC, and laser-excited fluorescence spectroscopy performed under line-

narrowing (Sj <- $0 laser excitation at 4.2 K) and non-line narrowing conditions (Sj Sq 

laser excitation at 77 K) (28). The study shows tfiat laser induced fluorescence 

spectroscopy can provide new insights into the importance of adduct conformation for 

DNA repair. 

The major stable adduct formed in mouse skin DNA was found to be the (-1-)-

fra/w-c/i«-BPDE-N2-dG adduct (Figure 5-4) in agreement with previously reported results 

(7,41). The time profile of total BP adduct formation and repair, as measured by 

postlabeling, is fairly consistent with our fluorescence spectrometry results (compare 
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Figure 5-3A with Figure 5-6A) and previous in vivo studies of BP-treated mouse skin 

DNA (37) where the maximum BP adduct level was also observed 24 hours after BP 

application. The time profiles obtained by fluorescence spectrometry and the ones 

obtained by postlabeling/HPLC are not necessarily identical. The former method 

analyzes the whole mouse skin DNA after minimal sample handling, while the other 

methods involve digestion, ^^p-iabeling, and TLC separation, followed by adduct spot 

extraction firom the PEI-cellulose plates for HPLC analysis. Considering the fact that 

some adducts may be less completely recovered than others (total recovery of the 

postlabeling method for BP adducts is -50% (46)), and that for HPLC analysis only the 

major spot (about 80% of the total adducts) was recovered from the TLC plates, the data 

obtained by using fluorescence spectrometry may reflect more closely the total adduct 

profile. A possible explanation for the fact that for the 4-day and 7-day samples the total 

adduct levels obtained via ^^P-postlabeling are lower than those measured by non-

selectively excited fluorimetry (see Figure 5-6A), or by tritium counting as reported by 

DiGiovanni et al. (22), could be related to one or more steps in the postlabeling 

procedure that might cause a lower recovery for the most persistent adducts. 

The sterecisomeric {+)-trans and (+)-cw-a«ri-BPDE-N2-dG adducts constitute at 

least 80% of the total BP adducts found in mouse epidermal DNA by postlabeling (table 

5-1). Interestingly, the time courses of the trans- and cis adduct levels, as determined by 

HPLC, show remarkable differences. The shift of the maximum level to later time and 

the broader profile are indicative of a slower repair process for the (+)-cw-a/iri-BPDE-

N^-dG adduct compared to the (-l-)-frflnj-fl/iri-BPDE-N2-dG adduct. When we examined 

the in vivo formation and repair of BP adducts in terms of adduct conformations by means 

of low-temperature fluorescence spectroscopy, we found that adducts with internal (base-

stacked) conformations are repaired more slowly than external (solvent exposed) adducts 
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(see Figure 5-6). For internal adducts the apparent half-life of repair, is estimated to 

be about 57 hours while that of external adducts is about 19 hours. However, the most 

persistent adducts that were still present 7 days after the treatment featured a rather 

external character, indicating a bimodal distrubution of repair rates for these adducts (see 

Figure 5-6). The estimated values are comparable to the removal half-life of 28.3 

hours measured for (-t-)-a7ift"-BPDE adducts from a DNA-repair-proficient line of Chinese 

hamster ovary (CHO) cells (24). The apparent half-life of formation, x^, obtained by 

fitting the experimental data, is 18 hours for both external and internal adducts. This is 

to be expected as the rate-limiting step for adduct formation in vivo is believed to be 

metabolic activation of BP to the electrophilic metabolite BPDE rather than BPDE 

binding to the DNA which is accomplished within a few minutes in vivo and in vitro (24). 

We have shown earlier that the conformational distribution of the (+)-trans-anti-

BPDE-N2-dG adduct depends on the 5'-flanking base of the adducted guanine (21). The 

conformational distribution of the (-f-)-rrfl«5-an/z-BPDE-N2-dG adduct in duplex 

oligonucleotides consists primarily of (-t-)-l (external; solvent exposed) and (+)-2 ( 

partially base-stacked) conformations with fluorescence origin bands located at 378 and 

380.3 nm, respectively (14). In this study, the fluorescence origin bands of mouse skin 

DNA samples were found to be red-shifted compared to diat of (-f-)-Gnft'-BPDE adducts 

to calf-thymus DNA formed in vitro (28) or typical (-f-)-?m/w-a«ft'-BPDE-N2-dG adducts 

to various duplex oligonucleotides (14,21). This suggests that in mouse skin DNA the 

major, (-l-)-rra/w-fln/z-BPDE-N2-dG adduct experiences very strong base-stacking 

interactions. The 24-hours sample shows the largest contribution of tiiese base-stacked 

conformations (maximum of origin band is 380.3 nm for 350 nm excitation). The 

contribution from intercalated cis- adducts alone cannot account for diis red shift since the 

cis- adduct level is still at its maximum value at 48 hours after BP application. In 
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addition, the (+)-cw-flnft"-BPDE-N2-dG adduct constitutes less than 10 % of the total 

anti-BPDE adducts as determined by HPLC. The shifts of the conformational 

distribution in time observed for the total adduct fluorescence (consisting mainly of (+)-

rra7w-aM//-BPDE-N2-dG adducts) may be explained by different repair rates for adducts 

with different conformations, depending on the base sequences around the adducted sites. 

Our findings are consistent with the sequence-specific incision repair of BPDE lesions, 

which was suggested by Tang et al. (47) in their study of UVRABC nuclease activity on ( 

±)-Gnri-BPDE adducts to DNA in vivo and in vitro. They found that when (fiKUS RF 

DNA modified with (±)-a«ft-BPDE was treated with UVRABC nuclease firom E. coli, the 

incision repair activity of the enzyme depended on the base sequence at the BPDE lesion 

site, suggesting that sequence-specific conformations of BPDE adducts affect protein 

binding and/or processing. 

Our findings that the intercalated (base-stacked) adducts and (-l-)-cw-anft'-BPDE-

N^-dG adducts in mouse epidermis are repaired approximately 3 times more slowly than 

±e major fraction of external adducts and (+)-rra/i5-anri-BPDE-N2-dG adducts are in 

agreement with previously reported data on transcription elongation by T7 RNA 

polymerase (19). In their study, Choi and coworkers reported that the {+)-trans-anti-

BPDE-N2-dG adduct inhibited elongation by T7 RNA polymerase more efficiently than 

the (-l-)-m-fl/zft'-BPDE-N2-dG adduct when oligonucleotides with stereoisomerically pure 

BPDE-guanine adducts were used as templates. They also suggested that the premature 

termination of RNA synthesis occurring at or near the lesion site might be perceived by 

the cell as a signal to cle^ the adduct. Therefore, (-l-)-rra/w-anft'-BPDE-N2-dG adduct, 

being an efficient inhibitor of transcription, would be removed preferentially. Evidence 

for such a mechanism has been provided by Chen et al. (48), who reported preferential 

removal of BPDE adducts from die transcribed strand compared with the non-transcribed 
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strand of the hprt gene in human diploid fibroblasts exposed to (±)-a/ift'-BPDE. 

However, it remains to be established whether the observed repair kinetics in mouse skin 

are also a consequence of this mechanism. The preferential recognition of the {-\-)-trans-

fl«n'-BPDE-dG adduct by repair systems may be related to die change in DNA structure 

induced by BPDE binding. The tertiary structure of BPDE-modified duplex 

oligonucleotides was found to be altered most significantly in case of the {+)-trans-anti-

BPDE-dG adduct, as shown by the strong reduction of electrophoretic mobility in native 

polyacrylamide gel electrophoresis when compared with oligonucleotides containing (-)-

trans, (+)-cw and (-)-cw-flnft-BPDE-dG adducts (14). Also, the flexible hinge joint or 

bent/kinked structure (10,44,49,50) induced by (+)-<2nft"-BPDE adducts (which are 

primarily {+)-trans-anti-BPDE-dG adducts) indicate tertiary DNA strucmre changes 

around this particular lesion. 

In summary, our results demonstrate that the rate of removal of BPDE-DNA 

adducts in mouse skin, a target organ for BP carcinogenesis, depends on adduct 

conformation. Taken together with evidence that adduct conformation is influenced by 

the neighboring base(s) in the DNA sequence, our results provide the first in vivo 

evidence that adduct conformation and/or base sequence determines the reparability of 

BPDE-DNA adducts. 
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CHAPTER 6. SPECTROSCOPIC STUDY OF TO-PRO-3-DNA COMPLEXES 

6.1 Introduction 

During the past several years, it has been established that nonphotochemical hole 

burning is a general and facile phenomenon for chromophores in biological systems, such 

as proteins (chlorophylls, carotenoids, pheophytins and hemes) [1] and DNA (PAH-DNA 

adducts [2], intercalated dyes [3]). Recently, Hayes and Small [4] showed that 

nonphotochemical hole burning can be used as a probe of the molecular environment in 

their studies with oxazine 720 in two different forms of glassy ethanol [5] and aluminum-

phthalocyanine-tetrasulfonate in glassy water matrices [6]. There are many studies which 

show that the zero phonon hole (ZPH) width depends strongly on the amorphous host in 

which the chromophore is imbedded [7-9]. In the case of polymer hosts, the ZPH width 

was reduced as the rigidity of the polymer increased [10], Friedrich and coworkers [11] 

showed that the compressibilities of several tautomeric forms of mesoporphyrine IX 

substituted horseradish peroxidase differ by as much as a factor of 3 between tautomers 

resulting in different ZPH width shift upon pressure change. It was shown that the hole 

burning efficiency of an intercalating dye, daunomycin, is 60 times larger when it is 

bound to (dA-dT)5-(dA-dT)5 than when bound to (dG-dC)5-(dG-dC)5 [3]. Hole growth 

rates were also reported to depend strongly on the host environment [6]. Since the 

nonphotochemical hole burning has proven to be sensitive to the molecular environment 

and has been applied successfully to various biological systems, it was also suggested by 

Small and coworkers that the technique may be applicable to imaging biological systems 

with high sensitivity and resolution, and to diagnosis of normal and abnormal cells [4]. 

Currently, many fluorescent dyes that selectively associate with specific organelles 

(mitochondria, endoplasmic reticulum, Golgi apparatus, nucleus, cytoskeleton (F- and G-

actin), plasma membranes etc.) and with biological molecules (DNA, protein) are 
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available [12 and references therein]. A series of Rhodamine, lipophilic acridine orange, 

oxacarbocyanine, benzimidazolylcarbocyanine and styryl derivatives are known to stain 

mitochondria [13-15]. Short and long-chain carbocyanine derivatives are used for 

staining the endoplasmic reticulum (ER) to study structural interactions and dynamics of 

the ER [16,17]. NBD hexanoic ceramide, BODIPY ceramide and their sphingomyelin 

derivatives are available for staining Golgi apparatus [18-20]. For F-actin specific dyes, 

several fluorescent chromophores (BODIPY, Coumarin, fluorescein, rhodamine 

derivatives, Texas red etc.) are attached to phallotoxins which are bicyclic peptides that 

bind to F-actin [21,22]. For G-actin staining, DNase I is used instead of phallotoxins 

[23,24]. There are large numbers of DNA, protein and membrane binding dyes with 

fluorescence excitation and emission at various wavelengths (for review see reference 

12). 

Among the numerous DNA binding dyes, the two recently synthesized cyanine 

dyes YO-YO and TO-TO, which form extremely stable and highly fluorescent complexes 

with DNA, are considered to be the most promising in the development of DNA probes 

[25,26]. They are homodimeric derivatives of oxazole yellow (YO) and thiazole orange 

(TO), which are unsymmetric cyanine dyes with a conjugated chain connecting a 

quinoline moiety with a benzo-l,3-oxazole and a benzo-l,3-thiazole moiety, respectively. 

The dyes have excellent properties: high binding constants to DNA (10^ -10^^ ^nd a 

high kinetic stability of dye-DNA complex, a large enhancement in fluorescence (3000 

times) upon binding to double-stranded DNA, high extinction coefficients (~ lO^M-^cm-^) 

[25,27,28]. It was reported that the binding of the dyes to double-stranded DNA occur 

via bis-intercalation of the two monomeric units [29,30]. Recently, a detailed solution 

structure of the TO-TO-DNA complex was reported [31]. The large enhancement of the 

fluorescence is believed to be the result of decreased rotational mobility around the 
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inter nuclear bridge between the two aromatic ring systems [32]. A series of dyes derived 

from YO-YO and TO-TO have been synthesized with fluorescence emission maxima 

spanning from 450 nm to 700 nm [12]. 

TO-PRO-3 is a dye which has the quinoline moiety connected to the benzo-1,3-

thiazole moiety (see Figure 6-1 for the chemical structures) and has its absorption 

maximum at 642 nm and emission maximum at 661 nm when it binds to double stranded 

DNA in solution [12]. TO-TO-3 is a homodimer of two TO-PRO-3 units for which the 

binding constant to DNA is 40 times larger than that of TO-PRO-3. Both dyes can be 

excited by commercially available He-Ne lasers. The aims of the present study are to 

characterize the optical, hole burning properties of TO-PRO-3 and their changes upon 

binding to DNAs in order to explore the feasibility of using the nonphotochemical hole 

burning technique for imaging and diagnosis of biological systems. We are interested in 

whether the hole burning characteristics of the dye (hole growth kinetics, hole width, 

electron phonon coupling) change depending on the biological environment (in this study 

we will focus on DNA) and how they are affected in terms of the interaction between the 

dye and DNA. We used high resolution absorption and fluorescence spectroscopy in 

conjunction with nonphotochemical hole burning spectroscopy at low temperature. Also 

the optical and hole burning properties of the homodimeric dye, TO-TO-3, were 

measured and compared with those of the monomeric dye, TO-PRO-3. 

6.2 Materials and methods 

Chemicals and sample preparations 

TO-PRO-3 and TO-TO-3 iodide were purchased from Molecular Probes, Inc. as a 

ImM solution in DMSO and were used without further purification. Double and single 
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TO-PRO-3 

TO-TO-3 

Figure 6-1. Chemical structures of TO-PRO-3 and TO-TO-3. 
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stranded calf thymus DNA were purchased from Sigma Inc. Phosphate buffer was used 

for DNA sample preparation (20 mM disodium phosphate, 100 mM NaCl, pH 7.0 

filtered through a 0.22 nm pore size filter for sterilization). DNA concentration was 

determined by measuring the absorbance of corresponding solutions at 258 nm. The 

following extinction coefficients at 258 nm were used for each DNA solution [33]; 

double-stranded calf thymus DNA, 6.6 x 10^ M-^cm-^; single-stranded calf thymus DNA, 

1.0 X 10^ M-^cm-i . Samples were made as follows unless stated otherwise. For 

absorption measurement, TO-PRO-3 sample was made by adding 30 % water and 70 % 

glycerol to make a final dye concentration of 30 |iM. TO-PRO-3 with DNA solutions 

were made in 60 % phosphate buffer and 40 % glycerol with dye and DNA concentration 

of, 30 |iM and 600 nM of base pairs (l:20bp), respectively. For fluorescence excitation 

and emission measurements, dye and DNA concentrations were reduced to 3 |iM and 60 

UMbp, respectively. In order to avoid the precipitation of dye-DNA complexes and 

possible artifacts due to slow binding equilibrium kinetics, the aqueous DNA solution was 

added to the aqueous dye solution followed by glycerol. For TO-TO-3 absorption 

measurements, 50 ixM TO-TO-3 solutions were made in a 1:4:5 (v/v/v) 

DMSO:water:glycerol solvent, and 10 jiM TO-TO-3 with 500 DNA solutions were 

made in 60 % phosphate buffer and 40 % glycerol. For TO-TO-3 fluorescence 

measurements, the dye concentration was reduced to 5 |j,M and the DNA concentration 

was increased to 900 nM^p. 

Absorption measurements 

Absorption spectra of samples were measured with Bruker IFS 120 HR Fourier 

transform infrared spectrometer (FT-IR) over the range from 25000 to 10000 cm^i . The 

spectra were measured with a 1 cm-i resolution for the hole burning experiments and with 
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a 4 cm-1 resolution for simple absorption measurements. The sample solution was placed 

between two quartz plates separated by an o-shaped teflon spacer (1 mm thick) and the 

quartz plates were mounted in a copper sample holder with screws. The sample solution 

was first cooled slowly to 77 K by cold nitrogen vapor in order to produce an optically 

clear glass, then cooled further to liquid helium temperature in a cryostat for hole burning 

studies or kept at liquid nitrogen temperature for a simple low temperature absorption 

measurements. The sample temperature was measured with a silicon diode thermometer 

mounted on the copper sample holder. The hole burning light source was a Coherent 

699-29 ring dye laser (DCM Special dye) pumped by an argon ion laser (6 W output). 

With the intracavity etalons installed, the hole burning laser line width was < 20 MHz. 

The sample was placed at a 45 degree angle to both the burning laser beam and the probe 

beam from the FT-IR. The burning laser beam was defocused to illuminate the whole 

sample while the probe beam was not. 

Fluorescence excitation measurements 

A Coherent 699-29 ring dye laser pumped by an argon ion laser (6 W output) was 

used for the hole burning and as the fluorescence excitation source. DCM Special dye 

was used giving a tuning range from 615 nm to 706 nm. For hole burning and high 

resolution scans (scanning for hole width), the intracavity etalons were installed giving a 

laser line width of ^ 20 MHz. The wavelength was continuously monitored with a 

Burleigh wavemeter. The dye laser output power was stabilized with a laser amplitude 

stabilizer and monitored with a power meter equipped with a diode. The laser power 

density for the hole burning was varied with density filters within the range of 250 

nW/cm- to 300 nW/cm^, For the fluorescence excitation spectra before and after 

burning, the laser was attenuated to -250 nW/cm^. The laser illuminated ~0.35 cm^ 

area of a sample. The sample solutions in quartz tubes (2 mm i.d.) were first cooled 
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slowly to liquid nitrogen temperature then cooled to liquid helium temperature in a 

cryostat. The temperature was measured with a silicon diode thermometer mounted on 

the copper frame which holds the sample. Fluorescence from the sample was long pass 

filtered and detected with an RCA C31034 photomultiplier tube. The signal from the 

photomultiplier tube was amplified and digitized with a Stanford Research Systems SR-

400 photon counter. 

Fluorescence emission measurements 

The excitation source used for fluorescence emission measurements was a 

Lambda-Physik Lextra 100 XeCl excimer laser system providing high energy (200 

mJ/pulse) pulses with a repetition rate of up to 100 Hz at 308 nm. Typically, attenuated 

laser output (30 mW/cm^ intensity) was used. A double-nested glass low temperature 

cryostat was used for optical experiments at 77 K. Sample in quartz tubes (2 mm i.d.) 

were directly immersed in liquid nitrogen to obtain spectra at 77 K. The collected 

fluorescence was dispersed by a McPherson 2016 1-meter focal length monochromator 

and detected by a Princeton Instruments IRY 1024/G/B intensified photodiode array. A 

150 grooves/mm grating was employed providing 150 nm window and 0.8 nm resolution. 

No time resolved detection system was employed. 

6.3 Results and Discussions 

Absorption and Fluorescence emission measurements 

Absorption (frame A) and fluorescence emission (frame B) spectra of TO-PRO-3 

free in solution, TO-PRO-3 bound to double-, and TO-PRO-3 bound to single-stranded 



www.manaraa.com

156 

calf thymus DNA at low temperature are shown in Figure 6-2. TO-PRO-3, and 

TO-PRO-3 bound to DNAs exhibit similar absorption maxima around 640 nm at 4.2 K. 

The emission maxima at 77 K, however, are very different: ~642.3 nm, 649.5 nm and 

660.6 nm for the dye, the dye bound to double-stranded calf thymus DNA, and to single-

stranded calf thymus DNA, respectively. The fluorescence emission band of the free dye 

gradually shifted blue when its concentration was varied from 30 jiM to 0.5 |iM. The 

most blue shifted emission resulting in the smallest Stoke's shift 39 cm-^ is shown in the 

figure. The dye bound to double-stranded calf thymus DNA has similar FWHM as free 

dye in absorption, but there is an extra contribution on the red side of the absorption 

band. Fluorescence emission band of the dye bound to the double-strand DNA is very 

broad and its maximun is shifted red than that of the free dye. The dye bound to single-

stranded calf thymus DNA shows the largest FWHM of absorption band because of an 

additional absorption on the red side of the absorption band, and the most red shifted 

emission. 

Spectral hole burning measurement 

A hole burned spectrum for TO-PRO-3 bound to double-stranded calf thymus 

DNA is shown in Figure 6-3. At the fluence used, the zero phonon hole (ZPH) is not 

saturated. The broad pseudo-phonon side band hole (see the inset of the figure) is located 

at ~ 30 cm-i lower energy side of the ZPH. The anti-hole structure is not very clear due 

to interference by the real phonon side band hole to the high energy side of the ZPH. 

Hole burned spectra with deeper ZPH reveal the anti-hole structure more clearly 

indicating that the hole burning mechanism of the dye is nonphotochemical (see Figure 6-

4). 
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Figure 6-2. Absorption (frame A) and fluorescence emission (frame B) spectra of 
TO-PRO-3 (solid line) and TO-PRO-3 bound to double-stranded calf thymus DNA 
(dashed line) and single-stranded calf thymus DNA (dotted line). Absorption spectra are 
acquired at 4.2 K, For fluorescence emission measurement at 77 K, excitation 
wavelength was 308 nm. 
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Figure 6-3. Hole-burned spectrum of TO-PRO-3 bound to double-stranded calf thymus 
DNA at 5 K. The burn wavelength ,^b ~ 643 nm; burn intensity, 20 mW/cm^; burn 
time, 5 sec. The inset shows the difference spectrum of hole-burned and preburn 
absorption spectra. The broad pseudo-phonon side band hole is displaced to the red side 
of Xg by -30 cm-i. 
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In nonphotochemical hole burning, excitation (©l ) in the origin band yields the 

ZPH burned at COL accompanied by higher energy vibronic satellite holes. If excitation 

into congested vibronic absorption regions is utilized, vibronic satellite hole structures 

which are burned into die origin bands are generated in addition to the ZPH at the burn 

frequency. The displacement of the satellite holes from die burn frequency yields the 

excited-state frequencies of the Franck-Condon active modes. This is illustrated in 

Figure 6-4 and Figure 6-5. Figure 6-4 shows difference spectra of TO-PRO-3 and TO-

PRO-3 bound to double- and single-stranded calf thymus DNA for A,B = 650 nm. The 

figure shows the ZPH at cog (laser burn frequency), a broad pseudo-PSBH at the lower 

energy side of the ZPH, broad real vibronic satellite holes at die higher energy side and 

pseudo-vibronic holes at the lower energy side of the ZPH. The antihole structure at 

energies just above Og provides evidence that the spectra are produced by 

nonphotochemical hole burning. It should be noted that the vibronic contribution to the 

absorption at this wavelength, Pig, is observed only for the dye bound to DNA as 

evidenced by the pseudo-vibronic satellite holes at the red side of burn frequency (see 

curves b and c of Figure 6-4). For the dye without DNA, however, no vibronic 

contribution to the absorption at this wavelength is observed since no pseudo-vibronic 

hole exists. Therefore, the observed pseudo-vibronic holes must be from the dye 

adopting a conformation that is available only when bound to DNA, And the origin band 

maximum of the dye adopting that conformation must be red shifted compared to the 

absorpton band maximum (~640 nm, see Figure 6-2) in order to be excited vibronically 

with Xg = 650 nm. 

Difference spectra for A-g = 628 nm are shown in Figure 6-5. Satellite hole 

frequencies of the dye and the dye bound to DNAs are identical except for a few low 

frequency modes. The 162 cm-i mode exists in free dye and single-stranded calf thymus 
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Figure 6-4. Difference hole-burned spectra of TO-PRO-3, and TO-PRO-3 bound to 
double-stranded and single-stranded calf thymus DNA at 4.2 K. The burn wavelength , 
A-B = 650 nm (15384 cm*^); burn intensity, 200 mW/cm^. Satellite holes are labeled 
with the excited-state vibrational firequencies (cm-^. 
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Figure 6-5. Difference hole-burned spectra of TO-PRO-3, and TO-PRO-3 bound to 
double-stranded and single-stranded calf thymus DNA at 4.2 K. The burn wavelength 
,Xb = 628 nm (15924 cm-i); burn intensity, 200 mW/cm^. Satellite holes are labeled 
with excited-state vibrational frequencies (cm-^). An asterisk is used to label the mode 
which is distinctive (see the text). 
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DNA but loses Its intensity in double-stranded calf thymus DNA. The 177 cm^i mode is 

more active in double-stranded CT-DNA. The 197 cm-^ mode is active only in free dye 

while the 209 cm-^ mode is active only in DNA samples. These distinctive modes are 

labeled with an asterisk in the spectra of Figure 6-5. The relative intensity distributions 

of the satellite holes in the spectra are different, indicating that the Franck-Condon factor 

of each vibrational mode varies depending on the environment of the dye molecule. It is 

noted that very broad satellite holes exist at ~ 15400 cm-^ and ~ 15250 cm-i in the cases 

of the dye bound to double- and single-stranded calf thymus DNA, respectively. The 

broad holes must be related to the dye adopting a conformation which is different firom 

the ones producing sharp satellite holes. The position of the broad holes corresponds to 

shoulder (at -655 nm) in the absorption band of DNA samples (compare to Figure 6-2). 

Considering the broadness and the position of the holes, the conformation(s) responsible 

for the broad holes seems to have strong stacking interaction with DNA bases which may 

eventually results in a charge transfer between the DNA base and the dye. 

The excited-state fundamental vibrational frequencies and their measured Franck-

Condon factors for TO-PRO-3 without DNA are shown in Table 6-1. These Franck-

Condon factors were obtained using the method described by Gillie and Small [34]. The 

table illustrates that all intramolecular Franck-Condon factors are small. Therefore, we 

conclude that the linear electron-intramolecular vibration coupling for TO-PRO-3 is very 

weak, with the maximum Frank-Condon factor (equivalent to Huang-Rhys factor S 

contributed from intramolecular vibration) measured being -0.09. The linear electron-

phonon coupling (S, intermolecular) estimated from the Stoke's shift 39 cm-i = 2Sc0ni 

(©ni = 30 cm-i) is 0.65, and is considerably stronger than any of the intramolecular 

vibrations. 
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Table 6-1. Vibrational frequencies and Franck-Condon factors for TO-PRO-3 obtained 
by nonphotochemical hole burning at 4.2 K. 

Si vibrational frequencies (cm-1) Franck-Condon lectors 

158* 0.0241 
162 0.0115 
197 0.0183 
225 0.0069 
245 0.0115 
292 0.0340 

310* 0.0195 
339 0.0600 

360 0.0316 

398 0.0031 

413 0.0008 

460 0.0050 

480 0.0007 

503 0.0044 

518 0.0006 
527* 0.0299 

532 0.0025 
540 0.0027 

560 0.0132 

605 0.0374 

614* 0.0040 

619 0.0050 

787* 0.0221 

990* a 

1113* 0.0906 

1322* 0.0208 

Frequencies labeled with an asterisk were obtained from vibronic holes (Figure 6-4). 
Franck-Condon factors were obtained from pseudo-vibronic holes (Figure 6-5). 
a. The calculated value is included in the value of 1113 cm-^ mode. 
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Conformational equilibrium of TO-PRO-3 bound to DNA 

A shoulder in the absorption band, the broad and skew shaped emission band of 

the TO-PRO-3 bound to double-stranded calf thymus DNA indicate that the dye adopts 

more than one conformation. As indicated by the broad hole observed in vibronically 

excited hole burning spectrum, the dye binds to the double-stranded DNA with a strong 

base stacking interaction in addition to an external binding. Figure 6-6 shows the two 

different dye conformations contributing to an emission spectrum of the dye bound to 

double-stranded calf thymus DNA. The curve a is the emission spectrum of the dye 

bound to double-stranded calf thymus DNA, and the curve b is the emission spectrum of 

TO-PRO-3 free in solution representing the emission firom the dye externally bound to 

DNA. Note that the curve a -b can generate the emission from the dye adopting a 

conformation(s) other than the external conformation; an base-stacked conformation 

because the maximum is red shifted and the band is broader than those of the external 

conformaion. A similar conformational equilibrium was observed in the case of the dye 

bound to single-stranded calf thymus DNA with more contribution from a base stacked 

conformation than when bound to double-stranded DNA (data not shown). 

It would be reasonable to assume that TO-PRO-3 strongly interacting with the 

DNA (base-stacked conformation) is responsible for the broad satellite holes produced 

when burned at Xg = 650 nm (see Figure 6-5), and TO-PRO-3 weakly interacting with 

the DNA (externally bound conformation) is responsible for the sharp satellite holes. As 

an attempt to verify this assumption, the linear electron phonon coupling constants of the 

dye adopting the former and the latter conformation were estimated. Figure 6-7 shows 

the observed broad satellite hole (maximum at 656.0 nm) of the dye bound to single-

stranded calf thymus DNA, and the emission (maximum at 662.9 nm) spectrum of the 
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Figure 6-6. The conformational equilibrium of TO-PRO-3 bound to double-stranded calf 
thymus DNA. The fluorescence emission spectrum of TO-PRO-3 bound to double-
stranded calf thymus DNA (curve a), and the emission spectrum of 0.5 nM free TO-
PRO-3 solution (curve b). Curve a - b is obtained by subtracting the curve b from the 
curve a. T = 11 K, Xex = 308 nm. 
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Figure 6-7. Base-stacked conformation of TO-PRO-3 bound to single-stranded calf 
thymus DNA. The fluorescence emission spectrum (curve a) of TO-PRO-3 bound to 
single-stranded calf thymus DNA and difference hole-burned absorption spectrum (curve 
b) at 4.2 K. The emission spectrum was obtained by subtracting the contribution from 
the externally bound dye at T = 77 K. 
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dye bound to single-stranded calf thymus DNA after subtracting the contribution from the 

externally bound dye. The Stoke's shift form the two spectra is estimated to be 159 cm-^ 

resulting in S value (a measure of linear electron phonon coupling) as 2.64 for the base-

stacked conformation. Similarly, the S value for the dye bound to double-stranded DNA 

was calculated from the broad satellite hole observed with = 650 nm (curve b of 

figure 6-5) and from the fluorescence emission of the dye after subtracting the 

contribution from the externally bound dye (curve a - b of figure 6-6). For S value of the 

dye externally bound to the DNA, the absorption maximum the dye bound to DNA and 

the emission maximum of the free dye were used. The estimated Stoke's shifts and S 

values are listed in Table 6-2. As indicated in S values, the linear electron phonon 

coupling strength of the base-stacked conformation (strong, S > 1) are much larger than 

that of the external conformation (weak, S < 1). 

Dispersive hole growth kinetics 

Hole growth kinetics curves of free TO-PRO-3 and of TO-PRO-3 bound to 

double- and single-stranded calf thymus DNA at 4.2 K are shown in Figure 6-8. 

Considering dispersion of hole formation kinetics, the time-dependent hole depth, 1 -

D(t), is described by D(t) [35]: 

D(t) = exp [-x^ 12]  exp [-So^(x)t] 

with Sq = where P is the burn photon flux, cr is the peak absorption cross 

section, x is the excited state lifetime, and Qq is the prefactor in the Fermi-Golden rule 

expression for the extrinsic two level system (TLSe^t) relaxation rate, R, for 

nonphotochemical hcis; burning, R = exp(-2A,) where X is the tunnel parameter for 

TLSext assumed to be a Gaussian with a center at Xq and a standard deviation [36]. 

The integration variables \ = {X- X^^lox and |(x) = exp[-2(A,o-axx)]. As pointed out by 
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Table 6-2. Absorption and emission characteristics of TO-PRO-3 bound to DNAs at low 
temperature. 

Conformation ^max (abs.) ^max ^ Stoice's shift Huang-Rhys 

in nm in nm in cm~^ factor (S) ^ 

without DNA 640.7 642.3 39 0.65 

ds DNA / External 640.2 642.3 51 0.85 

ds DNA / Base-stacked 649.0 655.2 146 2.43 

ss DNA / External 641.0 642.3 32 0.53 

ss DNA / Base-stacked 656.0 662.9 159 2.64 

a. For the emission maximum of the external conformation of the dye bound to DNAs, 
the emission maximum of the dye without DNA is used. 
b. Huang-Rhys factors (S) are estimated from Stoke's shift = 2SOni, where is the 
mean phonon frequency. 
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Figure 6-8. Hole growth curves (noisy lines) and theoretical fits (smooth lines) of 
TO-PRO-3, and TO-PRO-3 bound to double-stranded and single-stranded calf thymus 
DNA at 4.2 K. The burn wavelength ,A,b = 650 nm; burn intensity, 270 nW/cm^. The 
fits are obtained with the following parameters: S = 0.61, Xq = 7.8 and = 0.86 for 
dye with no DNA, and 0.94, 8.8, 1.1 for with double-stranded DNA, and 1.3, 9.1, 1.3 
for with single-stranded DNA, respectively (for detailed fitting equation and parameter 
values, see the text). The inset is the hole shape for single-stranded calf thymus sample 
with the hole width 6.0 GHz estimated from a hole burned less than 5 %. 
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Kenney et al. [35], when fitting hole growth data, the measured depth of the ZPH peak is 

normalized to the maximum hole depth given by e'^ ( S is the Huang-Rhys factor). The 

value of o, the absorption cross section, was determined by scaling the room temperature 

to low-temperature homogeneous widths as determined from the room temperature 

absorption width and the hole width measured at low temperature. It was observed that 

the hole widths ranged from 6 GHz to 11 GHz depending on the depth of the hole. The 

narrowest width observed in the short burn limit, 6.0 GHz, was used for the fit. The 

same hole width, 6.0 GHz, was used for all 4.2 K kinetic curve fittings since the hole 

widths of various samples- TO-PRO-3 and TO-PRO-3 with various DNAs- were 

practically identical within the limit of experimental error. The fluorescence lifetime, x, 

was measured at 77 K as 3.5 ns for free TO-PRO-3 and 3.9 ns for TO-PRO-3 bound to 

double-stranded calf thymus DNA (data not shown). For single-stranded and other 

DNAs, 3.9 ns was also used for fitting. For Qq value, 7.6 x 1012 s-i was used as in 

reference [37]. The hole growth kinetics data are fit to 1 - D(t) in order to determine S, 

Xg and a^. Excellent fits of the calculated curves with the experimental data were 

obtained. The parameters used for the fits are S = 0.61, Xq = 7.8 and = 0.86 for the 

dye without DNA, and 0.94, 8.8, 1.1 for the dye bound to double-stranded calf thymus 

DNA, and 1.3, 9.1, 1.3 for the dye bound to single-stranded calf thymus DNA, 

respectively. Uncertainty of the calculated parameters is < 10 %. Xq value is less 

accurate than S and values since all possible experimental uncertainties (e.g. hole 

widtii, life time of excited state and burn photon flux) will influence this value while 

other parameters are hardly affected. It is also worth noting that the calculated S value 

may be underestimated since we used a high laser power densities for the later time points 

of the kinetic curves, where burning may occur through the absorption by phonon side 

bands even after the ZPH has reached its saturation depth. 
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The dye molecule can exist in several conformations (due to various binding 

modes, sites etc.), therefore, it is likely that we bum a certain conformation(s) more than 

others at this burn wavelength (650 nm). The dye bound externally to DNA will be 

burned more through its ZPH than the dye intercalated (or base-stacked) since the linear 

electron phonon coupling of the dye adopting the latter conformation is much larger than 

that adopting the former conformation. The calculated S values firom hole growth 

kinetics contain information on the conformation burned through ZPH (the coupling 

strength between the dye and DNAs), and of a conformation(s) where the dye is coupled 

very strongly to its environment. Note the S value of the free dye obtained from the 

saturated hole depth (0.61) is in good agreement with the S value estimated from Stoke's 

shift (0.65, see Table 2) since there is only one conformation in the case of the free dye. 

However, for the dye bound to double- and single-stranded calf thymus DNA, S values 

obtained from hole growth kinetics are between those of external and of base-stacked 

conformations obtained from Stoke's shifts; compare 0.94 with 0.85 and 2.43, and 1.3 

with 0.53 and 2.64 for double- and single-stranded DNA, respectively. This discrepancy 

in S values indicates that the dye exists in a mixture of conformations when bound to 

DNA. The S value of the dye bound to single-stranded DNA obtained from hole growth 

kinetics is larger than that of the dye bound to double-stranded DNA, indicating that the 

contribution from the dye adopting base-stacked conformation in the single-stranded DNA 

is larger than that in the double-stranded DNA. The calculated Xg and values 

primarily represent the average dispersive kinetic behavior of the dye adopting the 

conformation(s) which can be burned through ZPH (external conformation). It is noted 

that is larger in the single-stranded DNA (1.3) than in the double-stranded DNA (1.1). 
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Spectroscopic studies of TO-TO-3 

The absorption and the fluorescence emission spectra of the homodimeric dye TO-

TO-3, and the dye bound to double-stranded calf thymus DNA are shown in Figure 6-9. 

The absorption maximum is 648.9 nm for the free dye and 643.7 nm for the dye bound to 

double-stranded DNA. It is noted that the absorption maximum of the free TO-TO-3 is 

red shifted compared to the monomeric dye (TO-PRO-3, —641 nm), indicating that there 

is an intramolecular stacking interaction in the dimeric dye (compare with figure 6-2 

frame A). Also the spectral shape of TO-TO-3 bound to DNA is very similar to that of 

the TO-PRO-3 spectrum, but free TO-TO-3 shows more absorption at the high energy 

side of the band. The similar intramolecular stacking interaction (exciton coupling) was 

observed with YOYO and other cyanine dyes [38] and explained in terms of a charge 

transfer between two monomeric systems stacked with parallel orientation [32]. A very 

similar charge transfer may also occur with ±e monomeric dye (TO-PRO-3) since the 

fluorescence emission of the monomeric dye shifts red as the dye concentration increases 

(data not shown). 

The hole growth kinetic curves for TO-TO-3 and TO-TO-3 bound to double- and 

single-stranded calf thymus DNA are shown in Figure 6-10. The dye bound to double-

and single-stranded DNA show the hole formation kinetic behavior similar to the 

monomeric dye: the dye bound to double-stranded calf thymus DNA burns deeper than 

the one bound to single-stranded calf thymus DNA. However, the hole formation kinetic 

behavior of TO-TO-3 without DNA is very different compared to monomeric TO-PRO-3 

(compare figure 6-10 with 6-8). TO-TO-3 burns much less deep than TO-PRO-3 due to 

intramolecular stacking interaction between the two monomeric units. Another indication 

of the intramolecular stacking interaction is provided by the fluorescence life times of the 

dimeric dye and the monomeric dye measured at 77 K. Fluorescence life times were 2.9 
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Figure 6-9. Absorption spectra of TO-TO-3 (solid line) and TO-TO-3 bound to double-
stranded calf thymus DNA (dashed line) at 77K. 
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Figure 6-10. Hole growth curves of TO-TO-3, and TO-TO-3 with double-stranded and 
single-stranded calf thymus DNA at 5 K. The burn wavelength ,A.b = 659 nm; burn 

intensity, 1.4 ^iW/cm^. 
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ns and 4.0 ns for free TO-TO-3 and TO-TO-3 with ds CT-DNA, respectively. The 

fluorescence life time of TO-TO-3 with ds CT-DNA, 4.0 ns, is very similar to that of 

TO-PRO-3 with ds CT-DNA, 3.9 ns, while the free dyes show substantial differences in 

life time, 2.9 ns for TO-TO-3 and 3.5 ns for TO-PRO-3 (data not shown). No further 

investigation was carried out because of the poor solubility of the dye-DNA complexes at 

low temperatures. 

Structure of TO-PRO-3 bound to DNAs 

Unlike die structures of their mother compounds (TO-PRO-1 and TO-TO-1 which 

is a homodimeric form of TO-PRO-1, both compounds have the chromophore made with 

benzothiazol and quinolinium rings linked by a methylene unit) which have been 

investigated by high resolution NMR spectroscopy in solution recently [31], the detailed 

structures of TO-PRO-3 and TO-TO-3 have not been established. It was found [31] that 

TO-TO-1 bisintercalated between base pairs in solution with an unwinding of the DNA 

helix by 60 ° and an increase in base pair stacking distance from 3.6 to 6.7 A. Also the 

propeller twist angle of DNA bases increased at and near the binding sites. The two rings 

(benzothiazol and quinolinium ring) showed sequence preferences- benzothiazol ring 

preferred to intercalate between two pyrimidine bases while quinolinium ring intercalated 

between purine bases. Since the only difference between the molecular formula of 

TO-PRO-3 and TO-PRO-1 is an extra ethylene unit added between the benzothiazol and 

the quinolinium ring for TO-PRO-3, it has been assumed that the binding geometry of 

two molecules are similar [39]. However, the extra ethylene unit of TO-PRO-3 is very 

critical in determining whether the chromophore unit (two rings and the link) can 

intercalate between base pairs or not. It is obvious that the whole chromophore unit can 

not be accommodated between base pairs since the size change by die extra ethylene unit 
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is significant, ~3 A, unless the DNA undergoes an extreme structural distortion such as 

melting of the duplex structure. Therefore the dye primarily binds externally to DNA 

followed by a slow conversion to the base-stacked conformation. The observed base-

stacked conformation of the TO-PRO-3 when bound to double-stranded DNA is probably 

a partial intercalation of the chromophore unit (either a quinoline ring or a benzo-1,3-

thiazole ring). Similarly, a partial bisintercalation of the dimeric dye TO-TO-3 can be 

suggested. 

It is evident that there is more contribution from base-stacked conformation in the 

case of single-stranded calf thymus DNA than in die case of double-stranded calf thymus 

DNA. The absorption and emission spectrum of TO-PRO-3 bound to single-stranded 

DNA show more contribution at the red side of the bands. Dispersive hole growth 

kinetics of TO-PRO-3 bound to single-stranded calf thymus DNA showed a S value 1.3 

that is larger than that of the dye bound to double-stranded DNA (0.94). A similar trend 

in saturated hole depth was observed with TO-TO-3. Also, the absorption and emission 

maxima of the base-stacked conformation of TO-PRO-3 bound to single-stranded DNA 

are red shifted compared to those of the dye bound to double-stranded DNA. This is 

probably due to the structural flexibility of single-snranded DNA. The more flexible 

single-stranded DNA can arrange bases to interact more with the dye than double-

stranded DNA. 

6.4 Concluding Remarks 

In this study, we have shown that optical and hole burning properties of TO-PRO-

3 depend on its environment. We found that the saturated hole depth of TO-PRO-3 

decreased dramatically when bound to DNA, and the saturated hole depth of the dye 

bound to double-stranded calf thymus DNA is deeper than that in single-stranded calf 
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thymus DNA. Hole growth kinetic parameters Xq and of TO-PRO-3 increased when 

the dye bound to DNA. Unlike the saturated hole depth and hole growth kinetics, the 

hole width of TO-PRO-3 bound to DNA remained practically the same. The absorption 

bands maxima of the free dye, the dye bound to double-stranded DNA and the dye bound 

to single-stranded DNA are very similar while the emission maxima are different; in an 

increasing order of red shift, free dye < dye bound to double-stranded DNA < dye 

bound to single-stranded DNA. From the very broad satellite holes in vibronic hole 

burning spectra and the red shifted emission bands of TO-PRO-3 bound to double- and 

single-stranded DNAs, it is concluded that there is a binding mode(s) which results in a 

strong coupling between the dye and DNA (base-stacked conformation) in addition to an 

external binding mode. The conformational distribution of the dye bound to DNA is 

found to be responsible for the observed optical and hole burning properties. The 

homodimeric dye TO-TO-3 also showed that the hole growth kinetic property depended 

on its environment. Without DNA, the dimeric dye seems to have the stacking 

interaction between two intramolecular monomeric units. The stacking interaction is 

disrupted by forming a complex with DNA. 

Since the hole burning properties are sensitive to the environment of the probe 

molecule, by selecting appropriate probe molecule, it would be highly possible that this 

technique can be applied to imaging and diagnosis of biological systems. In order to 

understand the detailed nature of changes of optical and hole burning properties, further 

investigation is necessary. 

6.5 Prospect of Nonphotochemical Hole Burning for Imaging and Diagnosis 

There are many chemical and physical characteristics of cancer cells that can 

distinguish them from normal cells [40,41]. Among them, high nucleus-to-cytoplasm 
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ratio and prominent nucleoli [42,43] are the characteristics that may be utilized for hole 

burning imaging and diagnosis. When transformed cells in culture are studied, the 

following characteristics are found with malignant cells: lost requirement for adherence, 

alteration of cell surface and change in cytoskeleton [44-47]. Transformed cells generally 

lose the requirement for adherence; they grow without attachment to a substratum, 

therefore, they are more round shaped. Since the properties of transformed cells relating 

to growth and behavior are probably consequences of cell surface events, cell surface 

changes are becoming important subject for studying cell transformation. Probably the 

most important difference is that the proteins of die cell surface are much more mobile in 

transformed cells than in normal cells. Because the lipids are not intrinsically more 

mobile, it is believed that links between surface proteins and the underlying cytoskeletal 

elements are modified by transformation. Also, there are differences in the cytoskeleton. 

The actin microfilaments that span the length of normal cells are either diffusely 

distributed or concentrated beneath the cell surface. 

It is possible to choose a dye molecule that binds specifically to target biological 

systems. Based on the chemical and physical changes of cancer cells or transformed 

cells, many investigations using nonphotochemical hole burning of organelle or biological 

molecule specific dyes are possible. For example, an investigation of nuclei using DNA 

and RNA binding dyes and nonphotochemical hole burning for imaging and diagnosis is 

feasible. Many membrane binding dyes and protein binding dyes can be used to study the 

critical cell surface alteration upon transformation. For the cytoskeleton changes, actin 

specific dyes can be utilized. Nonphotochemical hole burning as a function of pressure is 

certainly applicable to study surface alteration and cytoskeleton changes, which are often 

accompanied by a change in compressibility. 
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CHAPTER 7. GENERAL CONCLUSIONS 

The conformational characteristics of the four stereochemically distinct anrf-BPDE 

modified duplexes d(CCATCGCTACC)*(GGTAGCGATGG) by trans or cis addition of 

the exocyclic amino group of guanine to the CIO posion of either (+)- or i-)-anti BPDE 

depend on the stereochemistry of the bound BPDE. The i+)-trans adduct adopts 

primarily an external conformation with only minor interactions with the helix, but a 

smaller firaction (-25 %) appears to exists in a partially base-stacked conformation while 

the i-)-trans adduct exists almost exclusively (~ 97 %) in an external conformation. 

Both cis adducts adopt an intercated conformation with only a very minor contribution 

with a more solvent-exposed character. It is also concluded that perturbation of die 

overall helical structure is the most significant for the (+)-trans adduct than the other 

adducts. 

5'-Flanking base of the BPDE lesion site affects the conformations of the trans 

adduct of i+)-anti-BPDE to N^-guanine in the 11-mer oligonucleotides, 

d(CTATGiG2G3TATC). In single-stranded form, the adduct at G2 or G3 (5'-flanking 

base is guanine) adopts a conformation with strong interaction with the bases. In 

contrast, the (+)-trans-anti-BPDE adduct with a 5'-flanking thymine exists in a primarily 

helix-external conformation. Similar conformational equilibria exist in the double-

stranded oligonucleotides. 3'-Flanking base has little influence on the conformational 

equilibrium of the i+)-trans-anti-BPDE adduct. 

More than 80 % of BPDE adducts formed after topical application of 

benzo[c]pyrene (BP) to the skin of mice are {+)-trans- and (-l-)-d5-anft-BPDE-N2-dG 

adduct to DNA. Total BPDE adduct level formed in DNA isolated from the skin of mice 

reaches the maximum at 24 hours after die BP treatment, then declines rapidly until 4 
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days after the treatment and much more slowly thereafter. The (-l-)-cw-cnft'-BPDE-N2-

dG adducts are repaired more slowly than most otiier adducts. The (,-^)-tran5-anti-

BPDE-N2-dG adducts adopts base-stacked, partially base-stacked and helix external 

conformations in vivo. The adducts in the base-stacked conformation are repaired less 

readily than the external adducts. 

Optical and hole burning properties of fluorescent DNA binding dyes TO-PRO-3 

and TO-TO-3 depend on their DNA environment. Stoke's Shifts, saturation hole depths 

and dispersivenesses of hole growth kinetics of TO-PRO-3 change as the DNA types, 

sequences and lengths change. However, the hole width remains practically the same 

unlike the other hole burning properties. The dye can exist in various conformations 

depending on the binding modes, and die conformational equilibrium depends on the 

DNA types, sequences and lengths. Among the conformations of the dye, there is a 

conformation(s) that is strongly coupled to the DNA resulting in the charge transfer 

between the dye and DNA bases. TO-TO-3 have the stacking interaction between two 

intramolecular monomeric units which is disrupted by forming a complex with DNA. 
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APPENDIX A. OPTICAL AND HOLE BURNING CHARACTERISTICS OF 
TO-PRO-3 BOUND TO DNA; EFTECTS OF DNA SEQUENCE AND SIZE 

Introduction 

TO-PRO-3 is a DNA binding dye with a quinoline moiety connected to a benzo-

1,3-thiazole moiety (see Figure 6-1 for the chemical structures) [1]. TO-TO-3 is a 

homodimer of two TO-PRO-3 units. The aims of the present study are to characterize the 

optical, hole burning properties of TO-PRO-3 bound to DNAs as a function of DNA 

sequences and sizes. The optical and hole burning characteristics of the dye (hole growth 

kinetics, hole width, electron phonon coupling, HB efficiency) change depending on the 

biological environment (such as DNA types, sequences, lengths etc.) were studied using 

high resolution absorption and fluorescence spectroscopy in conjunction with 

nonphotochemical hole burning spectroscopy at low temperature. The conformational 

equilibrium of the dye bound to DNA will be discussed with observed spectroscopic data. 
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Materials and methods 

Chemicals and sample preparations 

TO-PRO-3 and TO-TO-3 iodide were purchased from Molecular Probes, Inc. as a 

1 mM solution in DMSO and were used without further purification. Double and single 

stranded calf thymus DNA were purchased from Sigma Inc.. Poly(dA-dT)-poly(dA-dT) 

and poly(dG-dC)-poly(dG-dC) were also purchased from Sigma Inc.. Oligonucleotides 

were synthesized and subsequently purified by HPLC at Nucleic Acid Facility of Iowa 

State University. Phosphate buffer was used for DNA sample preparation (20 mM 

disodium phosphate, 100 mM NaCl, pH 7.0 filtered through a 0.22 |j,m pore size filter 

for sterilization). DNA concentration was determined by measuring the absorbance of 

corresponding solutions at 258 nm. The following extinction coefficients at 258 nm were 

used for each DNA solution [2]: double-stranded calf thymus DNA, 6.6 x 10^ M-^cm-^; 

single-stranded calf thymus DNA, 1.0 x 10^ M-^cm-i ; poly(dA-dT)-poly(dA-dT), 6.8 x 

10^ M-^cm-i ; poly(dG-dC)-poly(dG-dC), 8.4 x 10^ M-^cm-i ; single stranded 

oligonucleotides, 1.0 x 10^ M-^cm-^. 

Samples were made as follows unless stated otherwise. For absorption measurement, 

TO-PRO-3 sample was made by adding 30 % water and 70 % glycerol to make a final 

dye concentration of 30 |iM. TO-PRO-3 with DNA solutions were made in 60 % 

phosphate buffer and 40 % glycerol with dye and DNA concentration of, 30 jiM and 600 

|j,M of base pairs (l:20bp), respectively. For fluorescence excitation and emission 

measurements, dye and DNA concentrations were reduced to 3 p.M and 60 nM^p, 

respectively. In order to avoid the precipitation of dye-DNA complexes and possible 

artifacts due to slow binding equilibrium kinetics, the aqueous DNA solution was added 

to die aqueous dye solution followed by glycerol. 
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Absorption measurements 

Absorption spectra of samples were measured with Bruker IFS 120 HR Fourier 

transform infrared spectrometer (FT-IR) over the range from 25000 to 10000 cm^^ . The 

spectra were measured with a 4 cm-1 resolution. The sample solution was placed 

between two quartz plates separated by an o-shaped teflon spacer (1 mm thick) and the 

quartz plates were mounted in a copper sample holder with screws. The sample solution 

was first cooled slowly to 77 K by cold nitrogen vapor in order to produce an optically 

clear glass, then kept at liquid nitrogen temperature for a low temperature absorption 

measurements. The sample temperature was measured with a silicon diode thermometer 

mounted on the copper sample holder. 

Fluorescence excitation measurements 

A Coherent 699-29 ring dye laser pumped by an argon ion laser (6 W output) was 

used for the hole burning and as the fluorescence excitation source. DCM Special dye 

was used giving a tuning range from 615 nm to 706 nm. For hole burning, the 

intracavity etalons were installed giving a laser line width of < 20 MHz. For the 

fluorescence line narrowing measurement, the intracavity etalon was removed from the 

ring dye laser system and the wavelength was scanned by rotating the birefringent filter 

stack. In this configuration, the laser line width was 0.1 cm-^. The wavelength was 

continuously monitored with a Burleigh wavemeter. The dye laser output power was 

stabilized with a laser amplitude stabilizer and monitored with a power meter equipped 

with a diode. The laser power density for the hole burning was varied with density filters 

within the range of 250 nW/cm^ to 300 nW/cm^. For the fluorescence excitation spectra 

before and after burning, the laser was attenuated to ~250 nW/cm^. The laser 

illuminated •~0.35 cm^ area of a sample. The sample solutions in quartz tubes (2 mm 

i.d.) were first cooled slowly to liquid nitrogen temperature then cooled to liquid helium 
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temperature in a cryostat. Temperatures lower than 4.2 K were achieved by pumping the 

cryostat filled with liquid helium. The temperature was measured with a silicon diode 

thermometer mounted on the copper frame which holds the sample. Fluorescence from 

the sample was long pass filtered and detected with an RCA C31034 photomultiplier 

tube. The signal from the photomultiplier tube was amplified and digitized with a 

Stanford Research Systems SR-400 photon counter. 

Fluorescence emission measurements-NLN and FLN 

The excitation source used for low resolution fluorescence emission measurements 

(non-line narrowing, NLN) was a Lambda-Physik Lextra 100 XeCl excimer laser system 

providing high energy (200 mJ/pulse) pulses with a repetition rate of up to 100 Hz at 308 

nm. Typically, attenuated laser output (30 mW/cm^ intensity) was used for the low 

resolution fluorescence emission measurement. For fluorescence line narrowing 

measurements (FLN), a Coherent 699-29 ring dye laser pumped by an argon ion laser ( 6 

W output) with the laser line width —0.1 cm^^ was used as an excitation source. A 

double-nested glass low temperature cryostat was used for both 4.2 K (FLN) and 77 K 

(NLN) optical experiments. Sample in quartz tubes (2 mm i.d.) were directly immersed 

in liquid helium (or liquid nitrogen) to obtain spectra at 4.2 K (or 77 K). The collected 

fluorescence was dispersed by a McPherson 2016 1-meter focal length monochromator 

and detected by a Princeton Instruments TRY 1024/G/B intensified photodiode array. For 

FLN measurement, the monochromator was equipped with a 2400 grooves/mm grating 

providing 18 nm spectral window at 0.1 nm resolution. For low resolution fluorescence 

emission spectra (NLN), a 150 grooves/mm grating was employed (150 nm window and 

0.8 nm resolution). In both cases, no time resolved detection system was employed. 
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Results and Discussions 

Absorption and Fluorescence emission measurements 

Absorption and fluorescence emission spectra of TO-PRO-3 bound to DNAs are 

illustrated in Figures A-1 and A-2 (for TO-PRO-3, TO-PRO-3 bound to double- and 

single-stranded calf tiiymus DNA, see Figure 6-2). The absorption and the fluorescence 

emission bands of the dye with poly(dG-dC)-poly(dG-dC) in Figure A-1 are red shifted 

compared to those of the dye with poly(dA-dT)*poly(dA-dT) indicating that the 

interaction of the dye with DNA depends on the base sequences of the DNA. 

Interestingly, the absorption and the emission spectra of the double-stranded calf thymus 

DNA sample are similar to those of poly(dA-dT)-poly(dA-dT) sample but differ from 

those of poly(dG-dC)*poly(dG-dC) sample. Absorption spectra of duplex 11-mer 

oligonucleotide sample (d-(CCATCGCTACC)-d-(GGTAGCGATGG)), and poly(dG-dC)-

poly(dG-dC) are very similar but their emission spectra are different implying that the 

interaction of TO-PRO-3 with these DNAs is not the same. 

Absorption and emission spectra of TO-PRO-3 bound to single-stranded calf 

thymus DNA and to 1 l-mer oligonucleotides are shown in Figure A-2. Note that the 

DNA length appears to affect the interactions of the dye with DNAs since absorption 

bands of the dye bound to oligonucleotides are red shifted while emission bands of the 

dye bound to oligonucleotides are blue shifted compared to those of the dye bound to 

single-stranded calf thymus DNA. Also, differences in the emission spectra of two 11-

mer oligonucleotides samples are noted- the emission band of the d-(GGTAGCGATGG) 

sample is red shifted and broader than that of the d-(CCATCGCTACC) sample. The 

difference may be due to a base sequence effect on the interaction of the dye with single-
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Figure A-1, Absorption (frame A) and fluorescence emission (firame B) spectra of 
TO-PRO-3 bound to double-stranded calf thymus DNA (solid line), poly(dA-dT)-
poly(dA-dT) (dashed line), poly(dG-dC)-poly(dG-dC) (dotted line), 
d-(CCATCGCTACC)-d-(GGTAGCGATGG) (dashed and dotted line); T = 77 K, 
excitation wavelength was 308 nm. 
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Figure A-2. Absorption (frame A) and fluorescence emission (frame B) spectra of 
TO-PRO-3 bound to single-stranded calf thymus DNA (solid line), 
d-(CCATCGCTACC) (dashed line) and d-(GGTAGCGATGG) (dotted line); T = 
77 K, excitation wavelength was 308 nm. 
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stranded DNAs. In Table A-1, the absorption and the emission maxima of TO-PRO-3 

with various DNAs are summarized. 

Spectral hole burning measurement; Hole growth kinetics 

The time-dependent hole depth, 1 - D(t), is described by D(t) [3]: 

D(t) = (27t)'^''^J!^dx exp [-x^ /2] exp [-So^Wt] 

with Sq = Pofno"^ where P is the burn photon flux, o is the peak absorption cross 

section, x is the excited state lifetime, and Qq is the prefactor in the Fermi-Golden rule 

expression for the extrinsic two level system (TLSe^t) relaxation rate, R, for 

nonphotochemical hole burning, R = Qq exp(-2A,) where X is the tunnel parameter for 

TLSext assumed to be a Gaussian with a center at Xq and a standard deviation [4]. The 

integration variables x = (A, - Xo)/ox and ^(x) = exp[-2(A,o-cTxx)]- As pointed out by 

Kenney et al. [3], in fitting the hole growth data, the measured depth of the ZPH peak is 

normalized to the maximum hole depth given by e"® ( S is Huang-Rhys factor which is a 

measure of the electron-phonon coupling strength). The same value of a, the absorption 

cross section, the hole width, 6.0 GHz, fluorescence life time measured at 77 K (3.9 n) 

that are used in chapter 6 of this dissertation were used for all 4.2 K kinetic curve 

fittings. For JIq value, 7.6 x IQi^ g-i was used as in reference [5]. The hole growth 

kinetics data are fit to 1 - D(t) in order to determine S, A-o 

Calculated dispersive hole growth kinetic parameters of TO-PRO-3 bound to 

various DNAs are summarized in Table A-2. Uncertainty of the calculated parameters is 

less than 10 %. S values of the dye with various DNAs are different reflecting die 

differences in saturated hole depth. Dispersion of the hole growth kinetics- represented 

by Ox- also depends on the DNA. As mentioned in chapter 6, the calculated S values 

from hole growth kinetics contain information on die conformation burned through ZPH 
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Table A-1. Absorption and fluorescence emission characteristics of TO-PRO-3 with 
various DNAs at low temperature (77 K). 

^Tnax(abs.) a 

in nm 

Xniax(em-) ^ 

in nm 

firee dye 640.7 642.3 

ds CT-DNA 640.2 649.5 

poly (d A-dT) -poly (d A-dT) 639.0 649.0 

poly(dG-dC)-poly(dG-dC) 647.0 658.0 

d(CCATCGCTACC)-d(GGTAGCGATGG) 647.9 654.4 

ss CT-DNA 641.0 660.6 

d(CCATCGCTACC) 646.8 653.1 

d(GGTAGCGATGG) 646.6 657.3 

a. TO-PRO-3 and DNA concentrations, except oligonucleotides samples, were 30 nM 
and 600 nM^p in 60 % phosphate buffer (20 mM disodium phosphate, 1(X) mM NaCl, 
pH 7.0) and 40 % glycerol, respectively. For both single and double oligonucleotide 
samples, 3 |iM TO-PRO-3 and 60 ^iM^p oligonucleotide were used. The free dye, the 
dye bound to double-stranded calf thymus DNA, and the dye bound to single-stranded 
calf thymus DNA were measured at T = 4.2 K. 
b. For the dye with DNA samples, TO-PRO-3 and DNA concentrations were 3 nM and 
60 ixMbp , respectively. For the free dye sample, 0.5 |iM solution was used. 
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Table A-2. Calculated dispersive hole-growth parameters S, A-g, and of TO-PRO-3 
with various DNAs. Holes were burned at 4.2K; burning wavelength, 650 
nm; burn intensity, 270 nW/cm^. 

S Xq 

free dye 0.61 7.8 0.86 

poly(dA-dT)-poly(dA-dT) 0.83 8.9 0.96 

dsCT-DNA 0.94 8.8 1.1 

poly(dG-dC)-poly(dG-dC) 1.1 8.9 1.2 

d(CCATCGCTACC)-d(GGTAGCGATGG) 1-1 9.0 1.2 

ssCT-DNA 1.3 9.1 1.3 

d(GGTAGCGATGG) 1.8 9.1 1.5 
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(the coupling strength between the dye and DNAs), and of a conformation(s) where the 

dye is coupled very strongly to its environment. The calculated Xq and cr;^_ values 

represent the average dispersive kinetic behavior of the dye adopting the conformation(s) 

which can be burned through ZPH. 

Hole growth kinetics of TO-PRO-3 bound to poly(dA-dT)-poly(dA-dT) and to 

poly(dG-dC)-poly(dG-dC) at 2.1 K are shown in Figure A-3. The saturated hole depth of 

the dye bound to poly(dA-dT)-poly(dA-dT) is deeper than that of the dye bound to 

poly(dG-dC)-poly(dG-dC). This indicates that the electron phonon coupling of externally 

bound TO-PRO-3 to GC base pairs is stronger than that to AT base pairs, and/or the 

contribution from a base-stacked conformation is larger in case of poly(dG-dC)-poly(dG-

dC) than for poly(dA-dT)-poly(dA-dT), Parameters for the fit are the same ones used for 

the fit of hole growth curves measured at 4.2 K except die hole width was corrected 

according to T^-^ law [6] (6.0 GHz at 4.2 K was reduced to 2.4 GHz at 2.1 K). Also X,o 

value was slightly adjusted for a better fit. 

The effect of base sequences in hole burning is fiirther demonstrated in Figure A-

4. Identical hole formation kinetics for two different double-stranded DNAs, poly(dG-

dC)-poly(dG-dC) and d-(CCATCGCTACC)-d-(GGTAGCGATGGA), were observed 

indicating that DNA sequence is a key factor for hole formation kinetics in the case of 

double-stranded DNA. The oligonucleotide contains 7 GC base pairs out of 11 base 

pairs. 

Figure A-5 illustrates the dependence of hole formation kinetics on the amount of 

DNA. It is tempting to speculate that energy transfer between dyes can explain the 

observed difference. However, we concluded that no energy transfer occurs since no 

fluorescence emission spectra change was observed when dye to DNA ratio was varied 
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Figure A-3. Hole growth curves with theoretical fits of TO-PRO-3 bound to 
poly(dA-dT)-poly(dA-dT) and poly(dG-dC)-poly(dG-dC) at 2.1 K. The burn 
wavelength, A-g, is 649 nm and the burn intensity is 320 nW/cm^. The fits are 
obtained with the following parameters: S = 0.83, Xq = 8.8 and = 0.96 for 

poly(dA-dT)-poly(dA-dT), and 1.1, 9.0, 1.2 for poly(dG-dC)-poly(dG-dC), 
respectively. 
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Figure A-4. Hole growth kinetics of TO-PRO-3 bound to poly(dG-dC)-poly(dG-dC) 
and d-(CCATCGCTACC)-d-(GGTAGCGATGG) AT 4.2 K. The burn wavelength, 
X-B = 650 nm, burn intensity, 270 nW/cm^. 
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Figure A-5. Hole growth curves and hole shapes of TO-PRO-3 bound to double-
stranded calf thymus DNA with different dye to DNA ratios at 4.2 K. The inset 
shows hole shapes of two samples after 300 sec burning. Upper curve and hole 
shape correspond to 30 |iM TO-PRO-3 and 350 nM^p double-stranded calf thymus 
DNA. Bottom curve and hole shape correspond to 30 |j.M TO-PRO-3 and 700 nMt,p 
double-stranded calf thymus DNA. Hole widths are 10.4 and 9.7 GHz, 
respectively. The burn wavelength, Xg = 652 nm; burn intensity, 1.8 ^iW/cm^. 
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from l/5bp to l/20bp. The observed difference in the hole formation kinetics may be due 

to changes in binding modes and/or sites. 

Fluorescence line narrowing spectroscopy 

Fluorescence line narrowing (FLN) spectra of TO-PRO-3 and TO-PRO-3 bound 

to various DNAs are shown in Figure A-6. The vibrational frequencies in the FLN 

spectra, are the same as the ones observed in vibronic hole burning. Distinctive modes 

are also observed and labeled with an asterisk. Curves b and d correspond to double- and 

single-stranded DNA samples, respectively. Broad emission underneath the zero phonon 

lines is noted in curves of DNA samples. The broad emission is more clearly noticed in 

single-stranded calf thymus DNA and poly(dG-dC)-poly(dG-dC) samples with the 

emission maxima around 660 nm (curves d and e in frame B, respectively). 

Dispersive kinetics of nonphotochemical hole growth and quantum yield 

We found that the hole growth kinetics of TO-PRO-3 is independent of the 

burning temperature, in the temperature range 4.2 K to 2.1 K in agreement with the 

findings of Kenney et al. [3]. Since kT (at T = 4.2 K or 2.1 K) < < Om = 30 cm^^ 

(mean phonon frequency), the value for S must be the same at both temperatures studied. 

The temperature dependence of the hole growth kinetics was attributed to the temperature 

dependence of die peak absorption cross section, which is inversely proportional to 

homogeneous linewidth of the ZPH, r^oni, at low temperature. At low temperature it 

was established that is proportional to T^-^ [6]. Therefore, when the homogeneous 

linewidth of the ZPH is taken into account according to T^-^ law, the excellent fit shov n 

in Figure 6-7 (kinetic curves measured at 2.1 K) using the same parameters as those 
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Figure A-6. Fluorescence line-narrowing spectra of TO-PRO-3 and TO-PRO-3 
bound to various DNAs at 4.2 K. Curve a, the free dye; curve b, the dye bound to 
double-stranded calf thymus DNA; curve c, the dye bound to poly(dA-dT)-poly(dA-
dT); curve d, the dye bound to single-stranded calf thymus DNA; cun e, the dye 
bound to poly(dG-dC)-poly(dG-dC). = 632.01 nm. An asterisk is used to label 
the mode which is distinctive (see the text). 
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obtained for the kinetics at 4.2 K indicates that the hole burning efficiency is the same at 

those two temperatures. 

The average relaxation rates associated with hole burning and the average quantum 

yields for hole burning can be calculated based on the kinetic parameters obtained. The 

average relaxation rate, <R>, is [3]: 

< R >  =  R o e x p ( 2 a ^ )  

where Ro = Por fr®® TO-PRO-3, using Xq = 7.8 and = 0.86, <R> is 

calculated to be 5.6 x 10^ s-i. For poly(dA-dT)-poly(dA-dT) and poly(dG-dC)-poly(dG-

dC), <R> values are 8.9 x 10® S"^ and 2.5 x 10® s"^ respectively. The average hole 

burning quantum yield, <<|)>, can be calculated from die average relaxation rate by the 

relationship: 

<(t)> = <R>/(<R> + 1/t) 

where t is the life time of the excited state. For free TO-PRO-3, and TO-PRO-3 bound 

to poly(dA-dT)-poly(dA-dT) and poly(dG-dC)-poly(dG-dC), the average hole burning 

quantum yields are 1.9x 10'- , 3.5 x 10-^ and 9.7 x lO-^, respectively. These values are 

comparable to the hole burning quantum yields of other organic dyes in glassy matrices ( 

10-2 or 10-3 ) [3]. The average hole burning quantum yields of TO-PRO-3 bound to 

poly(dA-dT)-poly(dA-dT) and poly(dG-dC)-poly(dG-dC) are different from the values 

reported for daunomycin bound to (dA-dT)5-(dA-dT)5 and (dG-dC)5-(dG-dC)5 by Floser 

and Haarer [7], For daunomycin, the quantum yield of the system with (dA-dT)5-(dA-

dT)5 is 0.029 while that of (dG-dC)5*(dG-dC)5 is 4.8 x 10"^ indicating daunomycin bound 

to (dA-dT)5-(dA-dT)5 burns 60 times more efficiently than when bound to (dG-dC)5-(dG-

dC)5. On the contrary, TO-PRO-3 showed 2.8 times more efficient burning when it is 

bound to poly(dG-dC)-poly(dG-dC) than when bound to poly(dA-dT)-poIy(dA-dT). The 

differences in hole burning efficiencies of daunomycin and TO-PRO-3 indicate that the 
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interaction of the chromophore with DNA is different due to structural differences of 

chromophores. Daunomycin intercalates its planar aromatic ring system between the base 

pairs. Considering the size of the chromophore of TO-PRO-3, it would be reasonable to 

assume that the chromophore can be accommodated only partially between base pairs or 

binds in grooves instead of between base pairs. 

It is worth speculating the observed differences in hole-burning (saturated hole 

depth) and fluorescence emission properties of TO-PRO-3 bound to poly(dG-dC)-

poly(dG-dC) and to poly(dA-dT)-poly(dA-dT) in terms of the binding structure of the dye 

molecule. The observed Huang-Rhys parameter (S) of the dye bound to poly(dG-dC)-

poly(dG-dC) is larger than that of the dye bound to poly(dA-dT)-poly(dA-dT). This 

imply that there are more TO-PRO-3 intercalated partially in the case of poly(dG-dC)-

poly(dG-dC) while the externally bound (including groove binding) TO-PRO-3 prevails 

in the case of poly(dA-dT)-poly(dA-dT). The increased contribution from partially 

intercalated dyes can also explain the red shifted emission spectrum in the poIy(dG-dC)-

poly(dG-dC) sample. The conformational differences of the dyes bound to the two 

polynucleotides may be due to the stronger interaction between the dye and guanine-

cytidine bases than that between the dye and adenine-thymine bases. It should be 

mentioned that the estimated hole burning efficiency of TO-PRO-3 bound to DNA firom 

hole growth kinetics represents only the dye adopting a external conformation(s). In this 

external conformation(s), TO-PRO-3 bound to poly(dA-dT)-poly(dA-dT) and poly(dG-

dC)-poly(dG-dC) seem to show the similar hole burning efficiencies. A more detailed 

explanation at the molecular level requires further investigation including the strucmre of 

TO-PRO-3 bound to DNA. Nevertheless, it is evident that the hole burning efficiency is 

sensitive to dye-DNA interactions. 
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It should be noted that the length of the DNA also plays an important role in the 

interaction of the dye with DNA, TO-PRO-3 bound to poly(dG-dC)-poly(dG-dC) and 

double-stranded 11-mer oligonucleotide exhibit the very similar absorption spectra and 

hole growth kinetic parameters, however, their emission spectra showed different maxima 

and band widths. The discrepancy in fluorescence emission spectra may indicate that the 

strongly coupled states of the dye bound to oligonucleotide is different from the one 

bound to polynucleotide. The DNA length effect was also observed when comparing 

single-stranded polynucleotide and oligonucleotide samples. Both single-stranded 

oligonucleotide samples studied, d-(CCATCGCTACC) and d-(GGTAGCGATGG), 

showed smaller Stoke's shifts (149 and 252 cm-^, respectively) than single-stranded calf 

diymus DNA sample (463 cm-i) while the S value of d-GGTAGCGATGG sample (1.8) 

was larger than that of single-stranded calf thymus DNA (1.3). Therefore, in the case of 

single-stranded DNA, the interaction of the dye with DNA seems to be affected even 

more by the length of the DNA than in the case of double-stranded DNA. Also the base 

sequence effect of the single-stranded oligonucleotide was observed, d-

(GGTAGCGATGG) sample showed a larger S value (more contribution from base-

stacked conformation) than d-(CCATCGCTACC) sample. The former oligonucleotide 

contains 8 purines and 3 pyrimidines while the latter one contains 3 purines and 8 

pyrimidines implying that the observed base sequence effect may correlate with the 

content of purine/pyrimidine bases. 
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Concluding Remarks 

In this study, we have shown that optical and hole burning properties of TO-

PRO-3 depend on DNA types, sequences and lengths all of which affect the 

interaction between TO-PRO-3 and DNA. Purine bases appear to interact more with 

the dye resulting in the dye adopting the base-stacked conformation more than external 

conformation. Contribution firom the dye adopting base-stacked conformation is larger 

when bound to long DNA than when bound to oligonucleotides. 
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